diff --git a/polytopes.js b/polytopes.js index aede55c..b7011a8 100644 --- a/polytopes.js +++ b/polytopes.js @@ -755,8 +755,155 @@ export const dodecahedron = () => { } +export const tetrahedron = () => { + const r2 = Math.sqrt(2); + const r3 = Math.sqrt(3); + return { + name: 'Tetrahedron', + nodes: [ + {id:1, label: 1, x: 2 * r2 / 3, y: 0, z: -1/3, w: 0 }, + {id:2, label: 2, x: -r2 / 3, y: r2 / r3, z: -1/3, w: 0 }, + {id:3, label: 3, x: -r2 / 3, y: -r2 / r3, z: -1/3, w: 0 }, + {id:4, label: 4, x: 0, y: 0, z: 1, w: 0 }, + ], + links: [ + { id:1, source:1, target: 2}, + { id:2, source:1, target: 3}, + { id:3, source:1, target: 4}, + { id:4, source:2, target: 3}, + { id:5, source:2, target: 4}, + { id:6, source:3, target: 4}, + ], + geometry: { + node_size: 0.02, + link_size: 0.02 + }, + options: [ { name: '--' }], + description: `The simplest three-dimensional polytope, consisting of four triangles joined at six edges. The 5-cell is its four-dimensional analogue.`, + }; +}; + +export const octahedron = () => { + const nodes = [ + {id: 1, label: 1, x: 1, y: 0, z: 0, w: 0}, + {id: 2, label: 1, x: -1, y: 0, z: 0, w: 0}, + {id: 3, label: 2, x: 0, y: 1, z: 0, w: 0}, + {id: 4, label: 2, x: 0, y: -1, z: 0, w: 0}, + {id: 5, label: 3, x: 0, y: 0, z: 1, w: 0}, + {id: 6, label: 3, x: 0, y: 0, z: -1, w: 0}, + ]; + const links = [ + {id:1, source: 1, target: 3}, + {id:2, source: 1, target: 4}, + {id:3, source: 1, target: 5}, + {id:4, source: 1, target: 6}, + {id:5, source: 2, target: 3}, + {id:6, source: 2, target: 4}, + {id:7, source: 2, target: 5}, + {id:8, source: 2, target: 6}, + {id:9, source: 3, target: 5}, + {id:10, source: 3, target: 6}, + {id:11, source: 4, target: 5}, + {id:12, source: 4, target: 6}, + ] + links.map((l) => { l.label = 0 }); + return { + name: 'Octahedron', + nodes: nodes, + links: links, + geometry: { + node_size: 0.02, + link_size: 0.02 + }, + options: [ { name: '--' }], + description: `The three-dimensional cross-polytope, the 16-cell is its four-dimensional analogue.`, + }; + +} + +export const cube = () => { + const nodes = [ + {id: 1, label: 1, x: 1, y: 1, z: 1, w: 0}, + {id: 2, label: 2, x: -1, y: 1, z: 1, w: 0}, + {id: 3, label: 2, x: 1, y: -1, z: 1, w: 0}, + {id: 4, label: 1, x: -1, y: -1, z: 1, w: 0}, + {id: 5, label: 2, x: 1, y: 1, z: -1, w: 0}, + {id: 6, label: 1, x: -1, y: 1, z: -1, w: 0}, + {id: 7, label: 1, x: 1, y: -1, z: -1, w: 0}, + {id: 8, label: 2, x: -1, y: -1, z: -1, w: 0}, + ]; + scale_nodes(nodes, 1/Math.sqrt(3)); + const links = auto_detect_edges(nodes, 3); + links.map((l) => { l.label = 0 }); + return { + name: 'Cube', + nodes: nodes, + links: links, + geometry: { + node_size: 0.02, + link_size: 0.02 + }, + options: [ { name: '--' }], + description: `The three-dimensional measure polytope, the tesseract is its four-dimensional analogue.`, + }; + +} + + + +function make_icosahedron_vertices() { + const phi = 0.5 * (1 + Math.sqrt(5)); + + const nodes = [ + { x: 0, y: 1, z: phi, w: 0, label: 1 }, + { x: 0, y: -1, z: phi, w: 0, label: 1 }, + { x: 0, y: 1, z: -phi, w: 0, label: 1 }, + { x: 0, y: -1, z: -phi, w: 0, label: 1 }, + { x: 1, y: phi, z: 0, w: 0, label: 2 }, + { x: -1, y: phi, z: 0, w: 0, label: 2 }, + { x: 1, y: -phi, z: 0, w: 0, label: 2 }, + { x: -1, y: -phi, z: 0, w: 0, label: 2 }, + { x: phi, y: 0, z: 1, w: 0, label: 3}, + { x: phi, y: 0, z: -1, w: 0, label: 3}, + { x: -phi, y: 0, z: 1, w: 0, label: 3}, + { x: -phi, y: 0, z: -1, w: 0, label: 3}, + ]; + + scale_nodes(nodes, 1/Math.sqrt((5 + Math.sqrt(5)) / 2)); + index_nodes(nodes); + return nodes; +} + + + +export const icosahedron = () => { + const nodes = make_icosahedron_vertices(); + const links = auto_detect_edges(nodes, 5); + links.map((l) => l.label = 0); + + return { + name: 'Icosahedron', + nodes: nodes, + links: links, + geometry: { + node_size: 0.02, + link_size: 0.02 + }, + options: [ + { name: "--"}, + ], + description: `The icosahedron is a twenty-sided polyhedron and is dual to the dodecahedron. Its four-dimensional analogue is the 600-cell.` + + } +} + + export const build_all = () => { return [ + tetrahedron(), + octahedron(), + cube(), + icosahedron(), dodecahedron(), cell5(), cell16(),