// bad stuff function find_chords(chords, n) { return chords.filter((c) => c[0].id === n.id || c[1].id === n.id); } function find_neighbours(chords, n) { const c = find_chords(chords, n); return c.map((c) => c[0].id === n.id ? c[1] : c[0]) } // for a list of pairs [n1, n2] (these are nodes which share a common angle // from a center), find all the groups of nodes which don't appear in a pair // together function partition_nodes(pairs) { let groups = []; const seen = new Set(); for( const pair of pairs ) { // both nodes are in a group already if( seen.has(pair[0]) && seen.has(pair[1]) ) { continue; } let already = false; // check if either node is already in a group for( const group of groups ) { if( group.has(pair[0]) ) { group.add(pair[1]); seen.add(pair[1]); already = true; continue; } else if( group.has(pair[1]) ) { group.has(pair[0]); seen.has(pair[0]); already = true; continue; } } // if neither of the pair was in a former group, start a new group if( !already ) { groups.push(new Set(pair)); } // collapse any groups which now have common elements groups = collapse_groups(groups); } return groups; } // given a list of groups, if any have common elements, collapse them function collapse_groups(groups) { const new_groups = [ ]; for( group of groups ) { let collapsed = false; for( new_group of new_groups ) { const i = intersection(group, new_group); if( i.size > 0 ) { for( const e of group ) { new_group.add(e); } collapsed = true; break; } } if( !collapsed ) { new_groups.push(new Set(group)); } } return new_groups; } function intersection(s1, s2) { const i = new Set(); for( const e of s1 ) { if( s2.has(e) ) { i.add(e) } } return i; } function union(s1, s2) { const u = new Set(s1); for( const e of s2 ) { u.add(e); } return u; } function vector_angle(n1, n2, n3) { const v1 = new THREE.Vector4(n1.x, n1.y, n1.z, n1.w); const v2 = new THREE.Vector4(n2.x, n2.y, n2.z, n2.w); const v3 = new THREE.Vector4(n3.x, n3.y, n3.z, n3.w); v2.sub(v1); v3.sub(v1); const dp = v2.dot(v3); return Math.acos(dp / ( v2.length() * v3.length())); } function neighbour_angles_orig(chords, n) { const ns = find_neighbours(chords, n); const angles = {}; for( let i = 0; i < ns.length - 1; i++ ) { for( let j = i + 1; j < ns.length; j++ ) { const n2 = ns[i]; const n3 = ns[j]; const a = THREE.MathUtils.radToDeg(vector_angle(n, n2, n3)); const af = (a).toFixed(3); if( ! (af in angles) ) { angles[af] = []; } angles[af].push([n2.id, n3.id]); } } return angles; } function neighbour_angles(chords, n, angle) { const ns = find_neighbours(chords, n); const pairs = []; for( let i = 0; i < ns.length - 1; i++ ) { for( let j = i + 1; j < ns.length; j++ ) { const n2 = ns[i]; const n3 = ns[j]; const a = THREE.MathUtils.radToDeg(vector_angle(n, n2, n3)); const af = (a).toFixed(3); if( af === angle ) { pairs.push([n2.id, n3.id]); } } } return pairs; } function make_120_partition(nodes, n) { const chords = find_all_chords(nodes); const chord3 = chords["1.74806"]; // these are edges of the 600-cells; const pairs60 = neighbour_angles(chord3, n, "60.000"); const icosas = partition_nodes(pairs60); n.label = 1; const angles = icosa_nodes(nodes, icosas[0]); label_120_partition_r(nodes, chord3, 1, n, angles); } // recursive function to label a single 600-cell vertex partition of the // 120-cell by following icosahedral nets // this doesn't work! completely - labels only 108-112 function label_120_partition_r(nodes, chords, label, origin, neighbours) { console.log(`label_120_partition_r ${origin.id}`); console.log(neighbours.map((n) => n.id).join(', ')); // first try to label everything const unlabelled = []; for( const n of neighbours ) { if( n.label === 0 ) { console.log(`Labelled ${n.id} ${label}`); n.label = label; unlabelled.push(n); } else if( n.label !== label ) { console.log(`node ${n.id} is already in group ${n.label}`); //return false; } } for( const n of unlabelled ) { // the angles represent two icosahedral pyramids - partition them and // pick the one which is at 60 to the edge we arrived on //console.log(`looking for more neighbors for ${n}`); const pairs60 = neighbour_angles(chords, n, "60.000"); const icosas = partition_nodes(pairs60); const icosa = choose_icosa(nodes, origin, n, icosas); const icosa_n = icosa_nodes(nodes, icosa); console.log(`recursing to ${nice_icosa(nodes,icosa)}`); return label_120_partition_r(nodes, chords, label, n, icosa_n); } } // given a pair of icosa-sets, pick the one which is at the right angle to // the incoming vector function choose_icosa(nodes, origin, n1, icosas) { for( const icosa of icosas ) { const inodes = icosa_nodes(nodes, icosa); const a60 = inodes.map((ni) => { const a = THREE.MathUtils.radToDeg(vector_angle(n1, origin, ni)); return a.toFixed(3); }); if( a60.filter((a) => a === "60.000").length > 0 ) { return icosa; } } console.log("No icosa found!"); return undefined; } function icosa_nodes(nodes, icosa) { return Array.from(icosa).map((nid) => node_by_id(nodes, nid)).sort((a, b) => a.id - b.id); } function node_by_id(nodes, nid) { const ns = nodes.filter((n) => n.id === nid); return ns[0]; } function enumerate_icosas(nodes) { const chords = find_all_chords(nodes); const chord3 = chords["1.74806"]; // these are edges of the 600-cells; for( const n of nodes ) { const pairs60 = neighbour_angles(chord3, n, "60.000"); const icosas = partition_nodes(pairs60); for( const icosa of icosas ) { const inodes = icosa_nodes(nodes, icosa); console.log(icosa_to_csv(n.id, inodes).join(',')); } } } function icosa_to_csv(nid, icosa) { const cols = [ nid ]; const ia = icosa.map((n) => n.id); for( let i = 1; i < 601; i++ ) { if( ia.includes(i) ) { cols.push(i); } else { cols.push('') } } return cols; } function start_icosas(nodes, chords, origin) { const pairs60 = neighbour_angles(chords, origin, "60.000"); return partition_nodes(pairs60).map((i) => nice_icosa(nodes, i)); } function next_icosa(nodes, chords, origin, nid) { const n = node_by_id(nodes, nid); const pairs60 = neighbour_angles(chords, n, "60.000"); const icosas = partition_nodes(pairs60); const icosa = choose_icosa(nodes, origin, n, icosas); return nice_icosa(nodes, icosa); } function nice_icosa(nodes, icosa) { return icosa_nodes(nodes, icosa).map((n) => n.id).join(', '); } function find_by_chord(nodesid, n, d) { const EPSILON = 0.02; return Object.keys(nodesid).filter((n1) => { const d2 = dist2(nodesid[n1], nodesid[n]); return Math.abs(d2 - d ** 2) < EPSILON; }); } function has_chord(n1, n2, d) { const d2 = dist2(n1, n2); const EPSILON = 0.01; return Math.abs(d2 - d ** 2) < EPSILON; } function find_all_chords(nodes) { const chords = {}; for( let i = 0; i < nodes.length - 1; i++ ) { for( let j = i + 1; j < nodes.length; j++ ) { const n1 = nodes[i]; const n2 = nodes[j]; const chord = Math.sqrt(dist2(n1, n2)).toFixed(5); if( !(chord in chords) ) { chords[chord] = []; } chords[chord].push([n1, n2]); } } return chords; }