import * as THREE from 'three'; const HYPERPLANE = 2; class FourDShape extends THREE.Group { constructor(node_ms, link_ms, face_ms, structure) { super(); this.node_ms = node_ms; this.link_ms = link_ms; this.face_ms = face_ms; this.nodes4 = structure.nodes; this.nodes3 = {}; this.links = structure.links; this.faces = ( "faces" in structure ) ? structure.faces : []; this.node_size = structure.geometry.node_size; this.link_size = structure.geometry.link_size; this.geom_scale = 1; this.hyperplane = HYPERPLANE; this.initShapes(); } // if a node/link has no label, use the 0th material getMaterial(entity, materials) { if( "label" in entity ) { return materials[entity.label]; } else { return materials[0]; } } makeNode(material, v3) { const geometry = new THREE.SphereGeometry(this.node_size); const sphere = new THREE.Mesh(geometry, material); sphere.position.copy(v3); this.add(sphere); return sphere; } makeLink(material, link) { const n1 = this.nodes3[link.source].v3; const n2 = this.nodes3[link.target].v3; const length = n1.distanceTo(n2); const centre = new THREE.Vector3(); centre.lerpVectors(n1, n2, 0.5); const geometry = new THREE.CylinderGeometry(this.link_size, this.link_size, 1); const cyl = new THREE.Mesh(geometry, material); const edge = new THREE.Group(); edge.add(cyl); edge.position.copy(centre); edge.scale.copy(new THREE.Vector3(1, 1, length)); edge.lookAt(n2); cyl.rotation.x = Math.PI / 2.0; this.add(edge); return edge; } updateLink(link) { const n1 = this.nodes3[link.source].v3; const n2 = this.nodes3[link.target].v3; const length = n1.distanceTo(n2); const centre = new THREE.Vector3(); centre.lerpVectors(n1, n2, 0.5); link.object.scale.copy(new THREE.Vector3(this.geom_scale, this.geom_scale, length)); link.object.position.copy(centre); link.object.lookAt(n2); link.object.children[0].rotation.x = Math.PI / 2.0; } setFaceGeometry(face, geometry) { const values = []; for( const f of face.nodes ) { const v3 = this.nodes3[f].v3; values.push(v3.x); values.push(v3.y); values.push(v3.z); } const v3 = this.nodes3[face.nodes[0]].v3; values.push(v3.x); values.push(v3.y); values.push(v3.z); const vertices = new Float32Array(values); geometry.setAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); } makeFace(material, face) { const geometry = new THREE.BufferGeometry(); this.setFaceGeometry(face, geometry) const mesh = new THREE.Mesh( geometry, material ); this.add(mesh); return mesh; } fourDtoV3(x, y, z, w, rotations) { const v4 = new THREE.Vector4(x, y, z, w); for ( const m4 of rotations ) { v4.applyMatrix4(m4); } const k = this.hyperplane / (this.hyperplane + v4.w); return new THREE.Vector3(v4.x * k, v4.y * k, v4.z * k); } initShapes() { for( const n of this.nodes4 ) { const v3 = this.fourDtoV3(n.x, n.y, n.z, n.w, []); const material = this.getMaterial(n, this.node_ms); this.nodes3[n.id] = { v3: v3, object: this.makeNode(material, v3) }; } for( const l of this.links ) { const material = this.getMaterial(l, this.link_ms); l.object = this.makeLink(material, l); } for( const f of this.faces ) { const material = this.getMaterial(f, this.face_ms); f.object = this.makeFace(material, f); } } render3(rotations) { this.scalev3 = new THREE.Vector3(this.geom_scale, this.geom_scale, this.geom_scale); for( const n of this.nodes4 ) { const v3 = this.fourDtoV3(n.x, n.y, n.z, n.w, rotations); this.nodes3[n.id].v3 = v3; this.nodes3[n.id].object.position.copy(v3); this.nodes3[n.id].object.scale.copy(this.scalev3); } for( const l of this.links ) { this.updateLink(l); } for( const f of this.faces ) { this.setFaceGeometry(f, f.object.geometry); } } } export { FourDShape };