//testbed for playing with stuff in node repl const THREE =require('three'); function pandita(a) { const n = a.length; for( let k = n - 2; k >= 0; k-- ) { if( a[k] < a[k + 1] ) { for( let l = n - 1; l >= 0; l-- ) { if( a[k] < a[l] ) { const tmp = a[k]; a[k] = a[l]; a[l] = tmp; const revtail = a.slice(k + 1); revtail.reverse(); for( let i = 0; i < revtail.length; i++ ) { a[k + 1 + i] = revtail[i]; } return Math.floor(revtail.length / 2) + 1; } } console.log("Shouldn't get here"); process.exit(); } } return false; } function permutations_old(a) { a.sort(); const ps = [ [...a] ]; let running = true; while( running ) { const s = pandita(a); if( s ) { ps.push([...a]); } else { running = false; } } return ps; } function permutations(a) { a.sort(); const ps = [ [...a] ]; let running = true; while( pandita(a) > 0 ) { ps.push([...a]); } return ps; } function permutations_even(a) { a.sort(); let parity = 'even'; const ps = [ [...a] ]; let running = true; while( running ) { const s = pandita(a); if( s ) { if( parity === 'even' ) { if( s % 2 === 1 ) { parity = 'odd'; } } else { if( s % 2 === 1 ) { parity = 'even'; } } if( parity === 'even' ) { ps.push([...a]); } } else { running = false; } } return ps; } // for a given permutation, say [ 1, 1, 0, 0 ], return all // of the valid changes of sign, so: // [ [1, 1, 0, 0 ], [ -1, 1, 0, 0 ], [ 1, -1, 0, 0 ], [-1, -1, 0, 0 ]] // ie don't do it on the zeros function expand_sign(a, label) { const expanded = []; const exv = a.map((v) => v ? [ -v, v ] : [ 0 ]); for( const xv of exv[0] ) { for( const yv of exv[1] ) { for( const zv of exv[2] ) { for( const wv of exv[3] ) { expanded.push({label: label, x: xv, y:yv, z:zv, w:wv}); } } } } return expanded; } function coordinates(a, id0=1, even=false) { const ps = even ? permutations_even(a) : permutations(a); const coords = []; for( const p of ps ) { const expanded = expand_sign(p, 0); coords.push(...expanded); } return coords; } function index_nodes(nodes, scale) { let i = 1; for( const n of nodes ) { n["id"] = i; i++; } } function scale_nodes(nodes, scale) { for( const n of nodes ) { for( const a of [ 'x', 'y', 'z', 'w' ] ) { n[a] = scale * n[a]; } } } function dist2(n1, n2) { return (n1.x - n2.x) ** 2 + (n1.y - n2.y) ** 2 + (n1.z - n2.z) ** 2 + (n1.w - n2.w) ** 2; } function auto_detect_edges(nodes, neighbours, debug=false) { const seen = {}; const nnodes = nodes.length; const links = []; let id = 1; for( const n1 of nodes ) { const d2 = []; for( const n2 of nodes ) { d2.push({ d2: dist2(n1, n2), id: n2.id }); } d2.sort((a, b) => a.d2 - b.d2); const closest = d2.slice(1, neighbours + 1); if( debug ) { console.log(`closest = ${closest.length}`); console.log(closest); } for( const e of closest ) { const ids = [ n1.id, e.id ]; ids.sort(); const fp = ids.join(','); if( !seen[fp] ) { seen[fp] = true; links.push({ id: id, label: 0, source: n1.id, target: e.id }); id++; } } } if( debug ) { console.log(`Found ${links.length} edges`) } return links; } function make_120cell_vertices() { const phi = 0.5 * (1 + Math.sqrt(5)); const r5 = Math.sqrt(5); const phi2 = phi * phi; const phiinv = 1 / phi; const phi2inv = 1 / phi2; const nodes = [ coordinates([0, 0, 2, 2], 0), coordinates([1, 1, 1, r5], 0), coordinates([phi, phi, phi, phi2inv], 0), coordinates([phiinv, phiinv, phiinv, phi2], 0), coordinates([phi2, phi2inv, 1, 0], 0, true), coordinates([r5, phiinv, phi, 0], 0, true), coordinates([2, 1, phi, phiinv], 0, true), ].flat(); index_nodes(nodes); // scale_nodes(nodes, 0.5); return nodes; } // face detection for the 120-cell // NOTE: all of these return node ids, not nodes // return all the links which connect to a node function nodes_links(links, nodeid) { return links.filter((l) => l.source === nodeid || l.target === nodeid); } // filter to remove a link to a given id from a set of links function not_to_this(link, nodeid) { return !(link.source === nodeid || link.target === nodeid); } // given nodes n1, n2, return all neighbours of n2 which are not n1 function unmutuals(links, n1id, n2id) { const nlinks = nodes_links(links, n2id).filter((l) => not_to_this(l, n1id)); return nlinks.map((l) => { if( l.source === n2id ) { return l.target; } else { return l.source; } }) } function fingerprint(ids) { const sids = [...ids]; sids.sort(); return sids.join(','); } function auto_120cell_faces(links) { const faces = []; const seen = {}; let id = 1; for( const edge of links ) { const v1 = edge.source; const v2 = edge.target; const n1 = unmutuals(links, v2, v1); const n2 = unmutuals(links, v1, v2); const shared = []; for( const a of n1 ) { const an = unmutuals(links, v1, a); for( const d of n2 ) { const dn = unmutuals(links, v2, d); for( const x of an ) { for( const y of dn ) { if( x == y ) { shared.push([v1, a, x, d, v2]) } } } } } if( shared.length !== 3 ) { console.log(`Bad shared faces for ${edge.id} ${v1} ${v2}`); } for( const face of shared ) { const fp = fingerprint(face); if( !seen[fp] ) { faces.push({ id: id, edge: edge.id, v1: edge.source, v2: edge.target, fingerprint: fp, nodes: face }); id++; seen[fp] = true; } } } return faces; } // trying to go from faces to dodecahedra function shared_vertices(f1, f2) { return f1.nodes.filter((f) => f2.nodes.includes(f)); } function adjacent_faces(f1, f2) { // adjacent faces which share an edge, not just a vertex const intersect = shared_vertices(f1, f2); if( intersect.length < 2 ) { return false; } if( intersect.length > 2 ) { console.log(`warning: faces ${f1.id} and ${f2.id} have too many common vertices`); } return true; } function find_adjacent_faces(faces, face) { const neighbours = faces.filter((f) => f.id !== face.id && adjacent_faces(f, face)); return neighbours; } function find_dodeca_mutuals(faces, f1, f2) { // for any two adjacent faces, find their common neighbours where // all three share exactly one vertex (this, I think, guarantees that // all are on the same dodecahedron) const n1 = find_adjacent_faces(faces, f1); const n2 = find_adjacent_faces(faces, f2); const common = n1.filter((f1) => n2.filter((f2) => f1.id === f2.id).length > 0 ); // there's one extra here - the third which has two nodes in common with // both f1 and f2 - filter it out const mutuals = common.filter((cf) => { const shared = cf.nodes.filter((n) => f1.nodes.includes(n) && f2.nodes.includes(n)); return shared.length === 1 }); return mutuals; } function find_dodeca_next(faces, dodeca, f1, f2) { // of a pair of mutuals, return the one we haven't already got const m = find_dodeca_mutuals(faces, f1, f2); if( dodeca.filter((f) => f.id === m[0].id ).length > 0 ) { m.shift(); } return m[0]; } // from any two mutual faces, return all the faces in their dodecahedron function make_dodecahedron(faces, f1, f2) { const dodecahedron = [ f1, f2 ]; // take f1 as the 'center', get the other four around it from f2 const fs = find_dodeca_mutuals(faces, f1, f2); const f3 = fs[0]; const f6 = fs[1]; dodecahedron.push(f3); const f4 = find_dodeca_next(faces, dodecahedron, f1, f3); dodecahedron.push(f4); const f5 = find_dodeca_next(faces, dodecahedron, f1, f4); dodecahedron.push(f5); dodecahedron.push(f6); // get the next ring const f7 = find_dodeca_next(faces, dodecahedron, f6, f2); dodecahedron.push(f7); const f8 = find_dodeca_next(faces, dodecahedron, f2, f3); dodecahedron.push(f8); const f9 = find_dodeca_next(faces, dodecahedron, f3, f4); dodecahedron.push(f9); const f10 = find_dodeca_next(faces, dodecahedron, f4, f5); dodecahedron.push(f10); const f11 = find_dodeca_next(faces, dodecahedron, f5, f6); dodecahedron.push(f11); // get the last const f12 = find_dodeca_next(faces, dodecahedron, f7, f8); dodecahedron.push(f12); return dodecahedron; } // for a face, pick an edge, and then find the other two faces which // share this edge. These can be used as the starting points for the // first face's two dodecahedra function find_edge_neighbours(faces, face) { const n1 = face.nodes[0]; const n2 = face.nodes[1]; return faces.filter((f) => f.id !== face.id && f.nodes.includes(n1) && f.nodes.includes(n2)); } // each face is in two dodecahedra: this returns them both function face_to_dodecahedra(faces, f) { const edge_friends = find_edge_neighbours(faces, f); const d1 = make_dodecahedron(faces, f, edge_friends[0]); const d2 = make_dodecahedron(faces, f, edge_friends[1]); return [ d1, d2 ]; } // brute-force calculation of all dodecahedra function dd_fingerprint(dodecahedron) { const ids = dodecahedron.map((face) => face.id); ids.sort() return ids.join(','); } function make_120cell_cells(faces) { const dodecas = []; const seen = {}; for( const face of faces ) { const dds = face_to_dodecahedra(faces, face); for( const dd of dds ) { const fp = dd_fingerprint(dd); if( ! (fp in seen) ) { console.log(`added dodeca ${fp}`); dodecas.push(dd); seen[fp] = 1; } } } return dodecas; } const cell120 = () => { const nodes = make_120cell_vertices(); const links = auto_detect_edges(nodes, 4); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 } } } const nodes = make_120cell_vertices(); const links = auto_detect_edges(nodes, 4); const faces = auto_120cell_faces(links);