import * as PERMUTE from './permute.js'; function index_nodes(nodes, scale) { let i = 1; for( const n of nodes ) { n["id"] = i; i++; } } function scale_nodes(nodes, scale) { for( const n of nodes ) { for( const a of [ 'x', 'y', 'z', 'w' ] ) { n[a] = scale * n[a]; } } } function dist2(n1, n2) { return (n1.x - n2.x) ** 2 + (n1.y - n2.y) ** 2 + (n1.z - n2.z) ** 2 + (n1.w - n2.w) ** 2; } function auto_detect_edges(nodes, neighbours, debug=false) { const seen = {}; const nnodes = nodes.length; const links = []; let id = 1; for( const n1 of nodes ) { const d2 = []; for( const n2 of nodes ) { d2.push({ d2: dist2(n1, n2), id: n2.id }); } d2.sort((a, b) => a.d2 - b.d2); const closest = d2.slice(1, neighbours + 1); if( debug ) { console.log(`closest = ${closest.length}`); console.log(closest); } for( const e of closest ) { const ids = [ n1.id, e.id ]; ids.sort(); const fp = ids.join(','); if( !seen[fp] ) { seen[fp] = true; links.push({ id: id, label: 0, source: n1.id, target: e.id }); id++; } } } if( debug ) { console.log(`Found ${links.length} edges`) } return links; } // too small and simple to calculate export const cell5 = () => { const r5 = Math.sqrt(5); const r2 = Math.sqrt(2) / 2; return { nodes: [ {id:1, x: r2, y: r2, z: r2, w: -r2 / r5 }, {id:2, x: r2, y: -r2, z: -r2, w: -r2 / r5 }, {id:3, x: -r2, y: r2, z: -r2, w: -r2 / r5 }, {id:4, x: -r2, y: -r2, z: r2, w: -r2 / r5 }, {id:5, x: 0, y: 0, z: 0, w: 4 * r2 / r5 }, ], links: [ { id:1, source:1, target: 2}, { id:2, source:1, target: 3}, { id:3, source:1, target: 4}, { id:4, source:1, target: 5}, { id:5, source:2, target: 3}, { id:6, source:2, target: 4}, { id:7, source:2, target: 5}, { id:8, source:3, target: 4}, { id:9, source:3, target: 5}, { id:10, source:4, target: 5}, ], geometry: { node_size: 0.02, link_size: 0.02 } }; }; export const cell16 = () => { let nodes = PERMUTE.coordinates([1, 1, 1, 1], 0); nodes = nodes.filter((n) => n.x * n.y * n.z * n.w > 0); index_nodes(nodes); scale_nodes(nodes, 0.75); const links = auto_detect_edges(nodes, 6); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 } }; }; export const tesseract = () => { const nodes = PERMUTE.coordinates([1, 1, 1, 1], 0); index_nodes(nodes); scale_nodes(nodes, Math.sqrt(2) / 2); const links = auto_detect_edges(nodes, 4); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 } }; } export const cell24 = () => { const nodes = PERMUTE.coordinates([0, 0, 1, 1], 0); index_nodes(nodes); const links = auto_detect_edges(nodes, 6); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 } }; } function make_120cell_vertices() { const phi = 0.5 * (1 + Math.sqrt(5)); const r5 = Math.sqrt(5); const phi2 = phi * phi; const phiinv = 1 / phi; const phi2inv = 1 / phi2; const nodes = [ PERMUTE.coordinates([0, 0, 2, 2], 0), PERMUTE.coordinates([1, 1, 1, r5], 0), PERMUTE.coordinates([phi, phi, phi, phi2inv], 0), PERMUTE.coordinates([phiinv, phiinv, phiinv, phi2], 0), PERMUTE.coordinates([phi2, phi2inv, 1, 0], 0, true), PERMUTE.coordinates([r5, phiinv, phi, 0], 0, true), PERMUTE.coordinates([2, 1, phi, phiinv], 0, true), ].flat(); index_nodes(nodes); scale_nodes(nodes, 0.5); return nodes; } export const cell120 = () => { const nodes = make_120cell_vertices(); const links = auto_detect_edges(nodes, 4); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 } } } function make_600cell_vertices() { const phi = 0.5 * (1 + Math.sqrt(5)); const nodes = [ PERMUTE.coordinates([0, 0, 0, 2], 0), PERMUTE.coordinates([1, 1, 1, 1], 1), PERMUTE.coordinates([phi, 1, 1 / phi, 0], 1, true) ].flat(); index_nodes(nodes); const groups = partition_nodes_by_distance(nodes, 2); scale_nodes(nodes, 0.75); return nodes; } // Trying to do this with an algorithm, not just a lookup table. // I think that all of the vertices which belong to the same 24-cell group // are 2 units apart. function partition_nodes_by_distance_bad(nodes, d) { const groups = []; const EPSILON = 0.002; for( const n1 of nodes ) { let matched = false; for( const group of groups ) { for( const n2 of group ) { const d2 = dist2(n1, n2); // console.log(`comparing ${n1.id} ${n2.id}`); // console.log(n1); // console.log(n2); // console.log(`${d2} ${Math.abs(d2 - d**2)}`); if( Math.abs(d2 - d ** 2) < EPSILON ) { group.push(n1); matched = true; // console.log(`Matched ${n1.id} ${n2.id} ${d2}`); break; } } if( matched ) { break; } } if(! matched ) { // console.log(`unmatched node ${n1.id}`); groups.push([ n1 ]); } } console.log(`Build ${groups.length} groups`); console.log(groups); return groups; } // find all nodes in nodesid which are d away from n (and are not n) function nodes_by_distance(nodesid, n, d) { const EPSILON = 0.02; const neighbours = Object.keys(nodesid).filter((n1id) => { if( n1id !== n.id ) { const d2 = dist2(nodesid[n1id], nodesid[n]); console.log(`${n} ${n1id} ${d2}`); return Math.abs(d2 - d ** 2) < EPSILON; } else { return false; } }); console.log(`neighbours at ${d} ${neighbours}`); return neighbours; } function partition_nodes_by_distance(nodes, d) { const groups = []; const nodesid = {}; const EPSILON = 0.02; for( const node of nodes ) { nodesid[node.id] = node; } while( Object.keys(nodesid).length > 0 ) { const start = Object.keys(nodesid)[0]; const group = [ start ]; const neighbours = nodes_by_distance(nodesid, n, d).filter((n2) => !(n2 in group)); if( neighbours ) { group.push(...neighbours); } const group = partition_r(nodesid, [ start ], start, d); console.log(group); for( const g of group ) { delete nodesid[g]; } groups.push(group); } } export const cell600 = () => { const nodes = make_600cell_vertices(); const links = auto_detect_edges(nodes, 12); return { nodes: nodes, links: links, geometry: { node_size: 0.08, link_size: 0.02 } } }