// Utilities for generating sets of coordinates based on // permutations, even permutations and changes of sign. // Based on https://www.qfbox.info/epermute const THREE =require('three'); function pandita(a) { const n = a.length; for( let k = n - 2; k >= 0; k-- ) { if( a[k] < a[k + 1] ) { for( let l = n - 1; l >= 0; l-- ) { if( a[k] < a[l] ) { const tmp = a[k]; a[k] = a[l]; a[l] = tmp; const revtail = a.slice(k + 1); revtail.reverse(); for( let i = 0; i < revtail.length; i++ ) { a[k + 1 + i] = revtail[i]; } return Math.floor(revtail.length / 2) + 1; } } console.log("Shouldn't get here"); process.exit(); } } return false; } function permutations_old(a) { a.sort(); const ps = [ [...a] ]; let running = true; while( running ) { const s = pandita(a); if( s ) { ps.push([...a]); } else { running = false; } } return ps; } function permutations(a) { a.sort(); const ps = [ [...a] ]; let running = true; while( pandita(a) > 0 ) { ps.push([...a]); } return ps; } function permutations_even(a) { a.sort(); let parity = 'even'; const ps = [ [...a] ]; let running = true; while( running ) { const s = pandita(a); if( s ) { if( parity === 'even' ) { if( s % 2 === 1 ) { parity = 'odd'; } } else { if( s % 2 === 1 ) { parity = 'even'; } } if( parity === 'even' ) { ps.push([...a]); } } else { running = false; } } return ps; } // for a given permutation, say [ 1, 1, 0, 0 ], return all // of the valid changes of sign, so: // [ [1, 1, 0, 0 ], [ -1, 1, 0, 0 ], [ 1, -1, 0, 0 ], [-1, -1, 0, 0 ]] // ie don't do it on the zeros function expand_sign(a, label) { const expanded = []; const exv = a.map((v) => v ? [ -v, v ] : [ 0 ]); for( const xv of exv[0] ) { for( const yv of exv[1] ) { for( const zv of exv[2] ) { for( const wv of exv[3] ) { expanded.push({label: label, x: xv, y:yv, z:zv, w:wv}); } } } } return expanded; } function coordinates(a, id0=1, even=false) { const ps = even ? permutations_even(a) : permutations(a); const coords = []; for( const p of ps ) { const expanded = expand_sign(p, 0); coords.push(...expanded); } return coords; } function index_nodes(nodes, scale) { let i = 1; for( const n of nodes ) { n["id"] = i; i++; } } function scale_nodes(nodes, scale) { for( const n of nodes ) { for( const a of [ 'x', 'y', 'z', 'w' ] ) { n[a] = scale * n[a]; } } } function dist2(n1, n2) { return (n1.x - n2.x) ** 2 + (n1.y - n2.y) ** 2 + (n1.z - n2.z) ** 2 + (n1.w - n2.w) ** 2; } function auto_detect_edges(nodes, neighbours, debug=false) { const seen = {}; const nnodes = nodes.length; const links = []; let id = 1; for( const n1 of nodes ) { const d2 = []; for( const n2 of nodes ) { d2.push({ d2: dist2(n1, n2), id: n2.id }); } d2.sort((a, b) => a.d2 - b.d2); const closest = d2.slice(1, neighbours + 1); if( debug ) { console.log(`closest = ${closest.length}`); console.log(closest); } for( const e of closest ) { const ids = [ n1.id, e.id ]; ids.sort(); const fp = ids.join(','); if( !seen[fp] ) { seen[fp] = true; links.push({ id: id, label: 0, source: n1.id, target: e.id }); id++; } } } if( debug ) { console.log(`Found ${links.length} edges`) } return links; } // too small and simple to calculate const cell5 = () => { const r5 = Math.sqrt(5); const r2 = Math.sqrt(2) / 2; return { nodes: [ {id:1, x: r2, y: r2, z: r2, w: -r2 / r5 }, {id:2, x: r2, y: -r2, z: -r2, w: -r2 / r5 }, {id:3, x: -r2, y: r2, z: -r2, w: -r2 / r5 }, {id:4, x: -r2, y: -r2, z: r2, w: -r2 / r5 }, {id:5, x: 0, y: 0, z: 0, w: 4 * r2 / r5 }, ], links: [ { id:1, source:1, target: 2}, { id:2, source:1, target: 3}, { id:3, source:1, target: 4}, { id:4, source:1, target: 5}, { id:5, source:2, target: 3}, { id:6, source:2, target: 4}, { id:7, source:2, target: 5}, { id:8, source:3, target: 4}, { id:9, source:3, target: 5}, { id:10, source:4, target: 5}, ], geometry: { node_size: 0.02, link_size: 0.02 } }; }; const cell16 = () => { let nodes = coordinates([1, 1, 1, 1], 0); nodes = nodes.filter((n) => n.x * n.y * n.z * n.w > 0); index_nodes(nodes); scale_nodes(nodes, 0.75); const links = auto_detect_edges(nodes, 6); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 } }; }; const tesseract = () => { const nodes = coordinates([1, 1, 1, 1], 0); index_nodes(nodes); scale_nodes(nodes, Math.sqrt(2) / 2); const links = auto_detect_edges(nodes, 4); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 } }; } const cell24 = () => { const nodes = coordinates([0, 0, 1, 1], 0); index_nodes(nodes); const links = auto_detect_edges(nodes, 6); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 } }; } function make_120cell_vertices() { const phi = 0.5 * (1 + Math.sqrt(5)); const r5 = Math.sqrt(5); const phi2 = phi * phi; const phiinv = 1 / phi; const phi2inv = 1 / phi2; const nodes = [ coordinates([0, 0, 2, 2], 0), coordinates([1, 1, 1, r5], 0), coordinates([phi, phi, phi, phi2inv], 0), coordinates([phiinv, phiinv, phiinv, phi2], 0), coordinates([phi2, phi2inv, 1, 0], 0, true), coordinates([r5, phiinv, phi, 0], 0, true), coordinates([2, 1, phi, phiinv], 0, true), ].flat(); index_nodes(nodes); // scale_nodes(nodes, 0.5); return nodes; } const cell120 = () => { const nodes = make_120cell_vertices(); const links = auto_detect_edges(nodes, 4); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 } } } function make_600cell_vertices() { const phi = 0.5 * (1 + Math.sqrt(5)); const nodes = [ coordinates([0, 0, 0, 2], 0), coordinates([1, 1, 1, 1], 1), coordinates([phi, 1, 1 / phi, 0], 1, true) ].flat(); index_nodes(nodes); return nodes; } function find_by_chord(nodesid, n, d) { const EPSILON = 0.02; return Object.keys(nodesid).filter((n1) => { const d2 = dist2(nodesid[n1], nodesid[n]); return Math.abs(d2 - d ** 2) < EPSILON; }); } function has_chord(n1, n2, d) { const d2 = dist2(n1, n2); const EPSILON = 0.01; return Math.abs(d2 - d ** 2) < EPSILON; } function find_all_chords(nodes) { const chords = {}; for( let i = 0; i < nodes.length - 1; i++ ) { for( let j = i + 1; j < nodes.length; j++ ) { const n1 = nodes[i]; const n2 = nodes[j]; const chord = Math.sqrt(dist2(n1, n2)).toFixed(5); if( !(chord in chords) ) { chords[chord] = []; } chords[chord].push([n1, n2]); } } return chords; } const cell600 = () => { const nodes = make_600cell_vertices(); const links = auto_detect_edges(nodes, 12); return { nodes: nodes, links: links, geometry: { node_size: 0.08, link_size: 0.02 } } } function find_chords(chords, n) { return chords.filter((c) => c[0].id === n.id || c[1].id === n.id); } function find_neighbours(chords, n) { const c = find_chords(chords, n); return c.map((c) => c[0].id === n.id ? c[1] : c[0]) } // for a list of pairs [n1, n2] (these are nodes which share a common angle // from a center), find all the groups of nodes which don't appear in a pair // together function partition_nodes(pairs) { let groups = []; const seen = new Set(); for( const pair of pairs ) { // both nodes are in a group already if( seen.has(pair[0]) && seen.has(pair[1]) ) { continue; } let already = false; // check if either node is already in a group for( const group of groups ) { if( group.has(pair[0]) ) { group.add(pair[1]); seen.add(pair[1]); already = true; continue; } else if( group.has(pair[1]) ) { group.has(pair[0]); seen.has(pair[0]); already = true; continue; } } // if neither of the pair was in a former group, start a new group if( !already ) { groups.push(new Set(pair)); } // collapse any groups which now have common elements groups = collapse_groups(groups); } return groups; } // given a list of groups, if any have common elements, collapse them function collapse_groups(groups) { const new_groups = [ ]; for( group of groups ) { let collapsed = false; for( new_group of new_groups ) { const i = intersection(group, new_group); if( i.size > 0 ) { for( const e of group ) { new_group.add(e); } collapsed = true; break; } } if( !collapsed ) { new_groups.push(new Set(group)); } } return new_groups; } function intersection(s1, s2) { const i = new Set(); for( const e of s1 ) { if( s2.has(e) ) { i.add(e) } } return i; } function union(s1, s2) { const u = new Set(s1); for( const e of s2 ) { u.add(e); } return u; } function vector_angle(n1, n2, n3) { const v1 = new THREE.Vector4(n1.x, n1.y, n1.z, n1.w); const v2 = new THREE.Vector4(n2.x, n2.y, n2.z, n2.w); const v3 = new THREE.Vector4(n3.x, n3.y, n3.z, n3.w); v2.sub(v1); v3.sub(v1); const dp = v2.dot(v3); return Math.acos(dp / ( v2.length() * v3.length())); } function neighbour_angles_orig(chords, n) { const ns = find_neighbours(chords, n); const angles = {}; for( let i = 0; i < ns.length - 1; i++ ) { for( let j = i + 1; j < ns.length; j++ ) { const n2 = ns[i]; const n3 = ns[j]; const a = THREE.MathUtils.radToDeg(vector_angle(n, n2, n3)); const af = (a).toFixed(3); if( ! (af in angles) ) { angles[af] = []; } angles[af].push([n2.id, n3.id]); } } return angles; } function neighbour_angles(chords, n, angle) { const ns = find_neighbours(chords, n); const pairs = []; for( let i = 0; i < ns.length - 1; i++ ) { for( let j = i + 1; j < ns.length; j++ ) { const n2 = ns[i]; const n3 = ns[j]; const a = THREE.MathUtils.radToDeg(vector_angle(n, n2, n3)); const af = (a).toFixed(3); if( af === angle ) { pairs.push([n2.id, n3.id]); } } } return pairs; } function make_120_partition(nodes, n) { const chords = find_all_chords(nodes); const chord3 = chords["1.74806"]; // these are edges of the 600-cells; const pairs60 = neighbour_angles(chord3, n, "60.000"); const icosas = partition_nodes(pairs60); const angles = icosa_nodes(nodes, icosas[0]); label_120_partition_r(nodes, chord3, 1, n, angles); } // recursive function to label a single 600-cell vertex partition of the // 120-cell by following icosahedral nets function label_120_partition_r(nodes, chords, label, origin, neighbours) { console.log(`label_120_partition_r`); console.log(origin); console.log(neighbours.map((n) => n.id)); for( const n of neighbours ) { if( n.label === 0 ) { n.label = label; console.log(`Added ${n.id} to group ${label}`); // the angles represent two icosahedral pyramids - partition them and // pick the one which is at 60 to the edge we arrived on console.log(`looking for more neighbors for ${n}`); const pairs60 = neighbour_angles(chords, n, "60.000"); const icosas = partition_nodes(pairs60); const icosa = choose_icosa(nodes, origin, n, icosas); const icosa_n = icosa_nodes(nodes, icosa); return label_120_partition_r(nodes, chords, label, n, icosa_n); } else { if( n.label !== label ) { console.log(`node ${n.id} is already in group ${n.label}`); return false; } } } } // given a pair of icosa-sets, pick the one which is at the right angle to // the incoming vector function choose_icosa(nodes, origin, n1, icosas) { for( const icosa of icosas ) { const inodes = icosa_nodes(nodes, icosa); const a60 = inodes.map((ni) => { const a = THREE.MathUtils.radToDeg(vector_angle(n1, origin, ni)); return a.toFixed(3); }); if( a60.filter((a) => a === "60.000").length > 0 ) { return icosa; } } console.log("No icosa found!"); return undefined; } function icosa_nodes(nodes, icosa) { return Array.from(icosa).map((nid) => node_by_id(nodes, nid)); } function node_by_id(nodes, nid) { const ns = nodes.filter((n) => n.id === nid); return ns[0]; } const nodes = make_120cell_vertices(); // const chords = find_all_chords(nodes); // const chord3 = chords["1.74806"]; // these are edges of the 600-cells; // const pairs60 = neighbour_angles(chord3, nodes[0], "60.000"); // const icosas = partition_nodes(pairs60);