import * as THREE from 'three'; class TaperedLink extends THREE.Group { constructor(baseMaterial, n1, n2, r1, r2) { super(); const geometry = new THREE.ConeGeometry( 0.75, 1, 32, true ); const cplane = new THREE.Plane(new THREE.Vector3(0, -1, 0), 0.5); const material = baseMaterial.clone(); material.clippingPlanes = [ cplane ]; this.cone = new THREE.Mesh( geometry, material ); this.add( this.cone ); this.update(n1, n2, r1, r2); } update(n1, n2, r1, r2) { const kraw = r1 - r2; let k = ( kraw == 0 ) ? 0.001 : kraw; let nbase = n1.v3; let napex = n2.v3; let rbase = r1; let rapex = r2; if( k < 0 ) { nbase = n2.v3; napex = n1.v3; rbase = r2; rapex = r1; k = -k; } // FIXME - the problem is that when the h_offset > 1, the centroid // of the cone is on the other side of napex, so it looks the wrong way const l = nbase.distanceTo(napex); const h = l * rbase / k; const h_offset = 0.5 * h / l; const pos = new THREE.Vector3(); if( l > 0 ) { pos.lerpVectors(nbase, napex, h_offset); } if( h_offset < 1 ) { this.cone.scale.copy(new THREE.Vector3(rbase, h, rbase)); } else { // you're on the other side of napex so flip the cone this.cone.scale.copy(new THREE.Vector3(rbase, -h, rbase)); } this.lookAt(napex); this.position.copy(pos); this.cone.rotation.x = Math.PI / 2.0; const clipnorm = new THREE.Vector3(); clipnorm.copy(napex); clipnorm.sub(nbase); clipnorm.negate(); clipnorm.normalize(); this.cone.material.clippingPlanes[0].setFromNormalAndCoplanarPoint( clipnorm, napex ); } } export { TaperedLink };