import * as PERMUTE from './permute.js'; import * as DODECAHEDRA from './dodecahedra.js'; function index_nodes(nodes, scale) { let i = 1; for( const n of nodes ) { n["id"] = i; i++; } } function scale_nodes(nodes, scale) { for( const n of nodes ) { for( const a of [ 'x', 'y', 'z', 'w' ] ) { n[a] = scale * n[a]; } } } function dist2(n1, n2) { return (n1.x - n2.x) ** 2 + (n1.y - n2.y) ** 2 + (n1.z - n2.z) ** 2 + (n1.w - n2.w) ** 2; } function auto_detect_edges(nodes, neighbours, debug=false) { const seen = {}; const nnodes = nodes.length; const links = []; let id = 1; for( const n1 of nodes ) { const d2 = []; for( const n2 of nodes ) { d2.push({ d2: dist2(n1, n2), id: n2.id }); } d2.sort((a, b) => a.d2 - b.d2); const closest = d2.slice(1, neighbours + 1); if( debug ) { console.log(`closest = ${closest.length}`); console.log(closest); } for( const e of closest ) { const ids = [ n1.id, e.id ]; ids.sort(); const fp = ids.join(','); if( !seen[fp] ) { seen[fp] = true; links.push({ id: id, label: 0, source: n1.id, target: e.id }); id++; } } } if( debug ) { console.log(`Found ${links.length} edges`) } return links; } // too small and simple to calculate export const cell5 = () => { const r5 = Math.sqrt(5); const r2 = Math.sqrt(2) / 2; return { nodes: [ {id:1, label: 0, x: r2, y: r2, z: r2, w: -r2 / r5 }, {id:2, label: 1, x: r2, y: -r2, z: -r2, w: -r2 / r5 }, {id:3, label: 2, x: -r2, y: r2, z: -r2, w: -r2 / r5 }, {id:4, label: 3, x: -r2, y: -r2, z: r2, w: -r2 / r5 }, {id:5, label: 4, x: 0, y: 0, z: 0, w: 4 * r2 / r5 }, ], links: [ { id:1, source:1, target: 2}, { id:2, source:1, target: 3}, { id:3, source:1, target: 4}, { id:4, source:1, target: 5}, { id:5, source:2, target: 3}, { id:6, source:2, target: 4}, { id:7, source:2, target: 5}, { id:8, source:3, target: 4}, { id:9, source:3, target: 5}, { id:10, source:4, target: 5}, ], geometry: { node_size: 0.02, link_size: 0.02 } }; }; export const cell16 = () => { let nodes = PERMUTE.coordinates([1, 1, 1, 1], 0); nodes = nodes.filter((n) => n.x * n.y * n.z * n.w > 0); nodes[0].label = 0; nodes[3].label = 1; nodes[5].label = 2; nodes[6].label = 3; nodes[7].label = 0; nodes[4].label = 1; nodes[2].label = 2; nodes[1].label = 3; index_nodes(nodes); scale_nodes(nodes, 0.75); const links = auto_detect_edges(nodes, 6); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 } }; }; export const tesseract = () => { const nodes = PERMUTE.coordinates([1, 1, 1, 1], 0); index_nodes(nodes); for( const n of nodes ) { if( n.x * n.y * n.z * n.w > 0 ) { n.label = 1; } } scale_nodes(nodes, Math.sqrt(2) / 2); const links = auto_detect_edges(nodes, 4); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 } }; } const CELL24_INDEXING = { x: { y: 0, z: 2, w: 1 }, y: { z: 1, w: 2 }, z: { w: 0 } }; export const cell24 = () => { const nodes = PERMUTE.coordinates([0, 0, 1, 1], 0); for( const n of nodes ) { const axes = ['x', 'y', 'z', 'w'].filter((a) => n[a] !== 0); n.label = CELL24_INDEXING[axes[0]][axes[1]]; } index_nodes(nodes); const links = auto_detect_edges(nodes, 8); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 } }; } // face detection for the 120-cell // NOTE: all of these return node ids, not nodes // return all the links which connect to a node function nodes_links(links, nodeid) { return links.filter((l) => l.source === nodeid || l.target === nodeid); } // filter to remove a link to a given id from a set of links function not_to_this(link, nodeid) { return !(link.source === nodeid || link.target === nodeid); } // given nodes n1, n2, return all neighbours of n2 which are not n1 function unmutuals(links, n1id, n2id) { const nlinks = nodes_links(links, n2id).filter((l) => not_to_this(l, n1id)); return nlinks.map((l) => { if( l.source === n2id ) { return l.target; } else { return l.source; } }) } function fingerprint(ids) { const sids = [...ids]; sids.sort(); return sids.join(','); } function auto_120cell_faces(links) { const faces = []; const seen = {}; let id = 1; for( const edge of links ) { const v1 = edge.source; const v2 = edge.target; const n1 = unmutuals(links, v2, v1); const n2 = unmutuals(links, v1, v2); const shared = []; for( const a of n1 ) { const an = unmutuals(links, v1, a); for( const d of n2 ) { const dn = unmutuals(links, v2, d); for( const x of an ) { for( const y of dn ) { if( x == y ) { shared.push([v1, a, x, d, v2]) } } } } } if( shared.length !== 3 ) { console.log(`Bad shared faces for ${edge.id} ${v1} ${v2}`); } for( const face of shared ) { const fp = fingerprint(face); if( !seen[fp] ) { faces.push({ id: id, nodes: face }); id++; seen[fp] = true; } } } return faces; } function make_120cell_vertices() { const phi = 0.5 * (1 + Math.sqrt(5)); const r5 = Math.sqrt(5); const phi2 = phi * phi; const phiinv = 1 / phi; const phi2inv = 1 / phi2; const nodes = [ PERMUTE.coordinates([0, 0, 2, 2], 0), PERMUTE.coordinates([1, 1, 1, r5], 0), PERMUTE.coordinates([phi, phi, phi, phi2inv], 0), PERMUTE.coordinates([phiinv, phiinv, phiinv, phi2], 0), PERMUTE.coordinates([phi2, phi2inv, 1, 0], 0, true), PERMUTE.coordinates([r5, phiinv, phi, 0], 0, true), PERMUTE.coordinates([2, 1, phi, phiinv], 0, true), ].flat(); index_nodes(nodes); scale_nodes(nodes, 0.5); return nodes; } function label_nodes(nodes, ids, label) { nodes.filter((n) => ids.includes(n.id)).map((n) => n.label = label); } function label_faces_120cell(nodes, faces, cfaces, label) { const ns = new Set(); console.log(`label faces from ${cfaces}`); for( const fid of cfaces ) { const face = faces.filter((f)=> f.id === fid ); if( face.length > 0 ) { for ( const nid of face[0].nodes ) { ns.add(nid); } } } label_nodes(nodes, Array.from(ns), label); } function basic_auto_label_120cell(nodes, links) { const faces = auto_120cell_faces(links); const dodecas = DODECAHEDRA.DODECAHEDRA; //const cfaces = [ 1, 2, 4, 145, 169 ]; let colour = 1; for( const dd of dodecas ) { label_faces_120cell(nodes, faces, dd, colour); colour++; if( colour > 8 ) { colour = 1; } } // label_faces_120cell(nodes, faces, [ // 1, 2, 4, 169, 626, // 145, 149, 553, 173, 171, // 147, 554 // ], 2); // label_faces_120cell(nodes, faces, [ // 1, 5, 3, 193, 641, // 217, 221, 565, 197, 195, // 219, 566 // ], 3); } // manual compound-of-tetrahedra colouring function manual_label_120cell(nodes, links) { label_nodes(nodes, [1, 153, 29, 105], 1); label_nodes(nodes, [317, 409, 265, 109], 2); label_nodes(nodes, [221, 337, 25, 509], 3); label_nodes(nodes, [217, 413, 457, 361], 4); label_nodes(nodes, [313, 157, 461, 505], 5); // second dodecahedron needs to have opposite chirality label_nodes(nodes, [ 165, 33, 117 ], 1); label_nodes(nodes, [ 161, 465, 517 ], 2); label_nodes(nodes, [ 417, 469, 365 ], 3); label_nodes(nodes, [ 341, 37, 513 ], 4); label_nodes(nodes, [ 421, 269, 113 ], 5); // third label_nodes(nodes, [ 45, 101, 181 ], 1); label_nodes(nodes, [ 241, 429, 53 ], 2); label_nodes(nodes, [ 93, 229 ], 3); label_nodes(nodes, [ 173, 437 ], 4); label_nodes(nodes, [ 245, 325 ], 5); // fourth (id = 3) label_nodes(nodes, [ 89, 169, 49 ], 1); label_nodes(nodes, [ 321 ], 2); label_nodes(nodes, [ 425, 177 ], 3); label_nodes(nodes, [ 97, 225 ], 4); label_nodes(nodes, [ 41, 433], 5); } function meridian_label_120cell(nodes, links) { const DODECAS = [ [ 313, 1, 317, 221, 217, 417, 341, 421, 165, 161, 465, 469, 37, 269, 33, 113, 117, 517, 365, 513 ], [ 513, 365, 517, 117, 113, 577, 15, 581, 565, 561, 397, 399, 85, 389, 81, 301, 303, 213, 293, 209 ], [ 301, 209, 293, 213, 303, 211, 309, 294, 311, 215, 310, 210, 214, 312, 295, 212, 302, 304, 216, 296 ], [ 304, 302, 212, 296, 216, 400, 398, 84, 392, 88, 16, 580, 564, 568, 584, 368, 516, 116, 120, 520 ], [ 368, 516, 116, 120, 520, 272, 36, 468, 472, 40, 164, 420, 344, 424, 168, 220, 316, 4, 320, 224 ], [ 316, 4, 320, 224, 220, 412, 340, 416, 160, 156, 460, 464, 32, 268, 28, 108, 112, 512, 364, 508 ], [ 508, 364, 512, 112, 108, 572, 14, 576, 560, 556, 394, 396, 80, 388, 76, 298, 300, 208, 292, 204 ], [ 300, 298, 204, 292, 208, 206, 202, 306, 291, 308, 290, 305, 203, 207, 307, 289, 201, 297, 299, 205 ], [ 299, 297, 201, 289, 205, 395, 393, 73, 385, 77, 13, 569, 553, 557, 573, 361, 505, 105, 109, 509 ], [ 361, 505, 105, 109, 509, 265, 25, 457, 461, 29, 153, 409, 337, 413, 157, 217, 313, 1, 317, 221 ] ] let col = 1; for( const dd of DODECAS ) { label_nodes(nodes, dd, 5); col++; if( col > 5 ) { col = 1; } } } export const cell120 = () => { const nodes = make_120cell_vertices(); const links = auto_detect_edges(nodes, 4); meridian_label_120cell(nodes, links); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 }, } } // Schoute's partition via https://arxiv.org/abs/1010.4353 const partition600 = { "2,0,0,0": 1, "0,2,0,0": 1, "0,0,2,0": 1, "0,0,0,2": 1, "1,1,1,1": 1, "1,1,-1,-1": 1, "1,-1,1,-1": 1, "1,-1,-1,1": 1, "1,-1,-1,-1": 1, "1,-1,1,1": 1, "1,1,-1,1": 1, "1,1,1,-1": 1, "k,0,-t,-1": 2, "0,k,1,-t": 2, "t,-1,k,0": 2, "1,t,0,k": 2, "t,k,0,-1": 2, "1,0,k,t": 2, "k,-t,-1,0": 2, "0,1,-t,k": 2, "1,k,t,0": 2, "t,0,-1,k": 2, "0,t,-k,-1": 2, "k,-1,0,-t": 2, "t,0,1,k": 3, "0,t,-k,1": 3, "1,-k,-t,0": 3, "k,1,0,-t": 3, "0,k,1,t": 3, "t,1,-k,0": 3, "k,0,t,-1": 3, "1,-t,0,k": 3, "t,-k,0,-1": 3, "0,1,-t,-k": 3, "1,0,-k,t": 3, "k,t,1,0": 3, "t,0,-1,-k": 4, "0,t,k,-1": 4, "1,-k,t,0": 4, "k,1,0,t": 4, "t,1,k,0": 4, "0,k,-1,-t": 4, "1,-t,0,-k": 4, "k,0,-t,1": 4, "0,1,t,k": 4, "t,-k,0,1": 4, "k,t,-1,0": 4, "1,0,k,-t": 4, "k,0,t,1": 5, "0,k,-1,t": 5, "t,-1,-k,0": 5, "1,t,0,-k": 5, "1,0,-k,-t": 5, "t,k,0,1": 5, "0,1,t,-k": 5, "k,-t,1,0": 5, "t,0,1,-k": 5, "1,k,-t,0": 5, "k,-1,0,t": 5, "0,t,k,1": 5 }; function partition_coord(i, coords, invert) { const j = invert ? -i : i; if( j >= 0 ) { return coords[j]; } return "-" + coords[-j]; } function partition_fingerprint(n, coords, invert) { const p = ['x','y','z','w'].map((a) => partition_coord(n[a], coords, invert)); const fp = p.join(','); return fp; } function label_vertex(n, coords, partition) { const fp = partition_fingerprint(n, coords, false); if( fp in partition ) { return partition[fp]; } else { const ifp = partition_fingerprint(n, coords, true); if( ifp in partition ) { return partition[ifp]; } console.log(`Map for ${fp} ${ifp} not found`); return 0; } } function map_coord(i, coords, values) { if( i >= 0 ) { return values[coords[i]]; } return -values[coords[-i]]; } function make_600cell_vertices() { const coords = { 0: '0', 1: '1', 2: '2', 3: 't', 4: 'k' }; const t = 0.5 * (1 + Math.sqrt(5)); const values = { '0': 0, '1': 1, '2': 2, 't': t, 'k': 1 / t }; const nodes = [ PERMUTE.coordinates([0, 0, 0, 2], 0), PERMUTE.coordinates([1, 1, 1, 1], 0), PERMUTE.coordinates([3, 1, 4, 0], 0, true) ].flat(); for( const n of nodes ) { n.label = label_vertex(n, coords, partition600) - 1; } for( const n of nodes ) { for( const a of [ 'x', 'y', 'z', 'w'] ) { n[a] = map_coord(n[a], coords, values); } } index_nodes(nodes); scale_nodes(nodes, 0.75); return nodes; } function get_node(nodes, id) { const ns = nodes.filter((n) => n.id === id); if( ns ) { return ns[0] } else { return undefined; } } function audit_link_labels(nodes, links) { console.log("Link audit"); for( const l of links ) { const n1 = get_node(nodes, l.source); const n2 = get_node(nodes, l.target); if( n1.label === n2.label ) { console.log(`link ${l.id} joins ${n1.id} ${n2.id} with label ${n2.label}`); } } } export const cell600 = () => { const nodes = make_600cell_vertices(); const links = auto_detect_edges(nodes, 12); return { nodes: nodes, links: links, geometry: { node_size: 0.02, link_size: 0.02 } } }