866 lines
21 KiB
JavaScript
866 lines
21 KiB
JavaScript
import * as PERMUTE from './permute.js';
|
|
|
|
import * as CELLINDEX from './cellindex.js';
|
|
|
|
function index_nodes(nodes, scale) {
|
|
let i = 1;
|
|
for( const n of nodes ) {
|
|
n["id"] = i;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
function scale_nodes(nodes, scale) {
|
|
for( const n of nodes ) {
|
|
for( const a of [ 'x', 'y', 'z', 'w' ] ) {
|
|
n[a] = scale * n[a];
|
|
}
|
|
}
|
|
}
|
|
|
|
function dist2(n1, n2) {
|
|
return (n1.x - n2.x) ** 2 + (n1.y - n2.y) ** 2 + (n1.z - n2.z) ** 2 + (n1.w - n2.w) ** 2;
|
|
}
|
|
|
|
export function auto_detect_edges(nodes, neighbours, debug=false) {
|
|
const seen = {};
|
|
const nnodes = nodes.length;
|
|
const links = [];
|
|
let id = 1;
|
|
for( const n1 of nodes ) {
|
|
const d2 = [];
|
|
for( const n2 of nodes ) {
|
|
d2.push({ d2: dist2(n1, n2), id: n2.id });
|
|
}
|
|
d2.sort((a, b) => a.d2 - b.d2);
|
|
const closest = d2.slice(1, neighbours + 1);
|
|
if( debug ) {
|
|
console.log(`closest = ${closest.length}`);
|
|
console.log(closest);
|
|
}
|
|
for( const e of closest ) {
|
|
const ids = [ n1.id, e.id ];
|
|
ids.sort();
|
|
const fp = ids.join(',');
|
|
if( !seen[fp] ) {
|
|
seen[fp] = true;
|
|
links.push({ id: id, label: 0, source: n1.id, target: e.id });
|
|
id++;
|
|
}
|
|
}
|
|
}
|
|
if( debug ) {
|
|
console.log(`Found ${links.length} edges`)
|
|
}
|
|
return links;
|
|
}
|
|
|
|
// too small and simple to calculate
|
|
|
|
export const cell5 = () => {
|
|
const c1 = Math.sqrt(5) / 4;
|
|
return {
|
|
name: '5-cell',
|
|
nodes: [
|
|
{id:1, label: 1, x: c1, y: c1, z: c1, w: -0.25 },
|
|
{id:2, label: 2, x: c1, y: -c1, z: -c1, w: -0.25 },
|
|
{id:3, label: 3, x: -c1, y: c1, z: -c1, w: -0.25 },
|
|
{id:4, label: 4, x: -c1, y: -c1, z: c1, w: -0.25 },
|
|
{id:5, label: 5, x: 0, y: 0, z: 0, w: 1 },
|
|
],
|
|
links: [
|
|
{ id:1, source:1, target: 2},
|
|
{ id:2, source:1, target: 3},
|
|
{ id:3, source:1, target: 4},
|
|
{ id:4, source:1, target: 5},
|
|
{ id:5, source:2, target: 3},
|
|
{ id:6, source:2, target: 4},
|
|
{ id:7, source:2, target: 5},
|
|
{ id:8, source:3, target: 4},
|
|
{ id:9, source:3, target: 5},
|
|
{ id:10, source:4, target: 5},
|
|
],
|
|
options: [ { name: '--' }],
|
|
description: `Five tetrahedra joined at ten faces with three
|
|
tetrahedra around each edge. The 5-cell is the simplest regular
|
|
four-D polytope and the four-dimensional analogue of the tetrahedron.
|
|
A corresponding polytope, or simplex, exists for every n-dimensional
|
|
space.`,
|
|
};
|
|
};
|
|
|
|
|
|
export const cell16 = () => {
|
|
let nodes = PERMUTE.coordinates([1, 1, 1, 1], 0);
|
|
nodes = nodes.filter((n) => n.x * n.y * n.z * n.w > 0);
|
|
|
|
nodes[0].label = 1;
|
|
nodes[3].label = 2;
|
|
nodes[5].label = 3;
|
|
nodes[6].label = 4;
|
|
nodes[7].label = 1;
|
|
nodes[4].label = 2;
|
|
nodes[2].label = 3;
|
|
nodes[1].label = 4;
|
|
|
|
index_nodes(nodes);
|
|
scale_nodes(nodes, 0.5);
|
|
const links = auto_detect_edges(nodes, 6);
|
|
|
|
return {
|
|
name: '16-cell',
|
|
nodes: nodes,
|
|
links: links,
|
|
options: [ { name: '--' }],
|
|
description: `Sixteen tetrahedra joined at 32 faces with four
|
|
tetrahedra around each edge. The 16-cell is the four-dimensional
|
|
analogue of the octahedron and is dual to the tesseract. Every
|
|
n-dimensional space has a corresponding polytope in this family.`,
|
|
};
|
|
};
|
|
|
|
|
|
|
|
export const tesseract = () => {
|
|
const nodes = PERMUTE.coordinates([1, 1, 1, 1], 0);
|
|
index_nodes(nodes);
|
|
|
|
for( const n of nodes ) {
|
|
if( n.x * n.y * n.z * n.w > 0 ) {
|
|
n.label = 2;
|
|
} else {
|
|
n.label = 1;
|
|
}
|
|
}
|
|
|
|
scale_nodes(nodes, 0.5);
|
|
const links = auto_detect_edges(nodes, 4);
|
|
links.map((l) => { l.label = 0 });
|
|
|
|
for( const p of [ 1, 2 ] ) {
|
|
const nodes16 = nodes.filter((n) => n.label === p);
|
|
const links16 = auto_detect_edges(nodes16, 6);
|
|
links16.map((l) => l.label = p);
|
|
links.push(...links16);
|
|
}
|
|
|
|
|
|
return {
|
|
name: 'Tesseract',
|
|
nodes: nodes,
|
|
links: links,
|
|
options: [
|
|
{ name: 'none', links: [ 0 ] },
|
|
{ name: 'one 16-cell', links: [ 0, 1 ] },
|
|
{ name: 'both 16-cells', links: [ 0, 1, 2 ] },
|
|
],
|
|
description: `The most well-known four-dimensional shape, the
|
|
tesseract is analogous to the cube, and is constructed by placing two
|
|
cubes in parallel hyperplanes and joining their corresponding
|
|
vertices. It consists of eight cubes joined at 32 face with three
|
|
cubes around each edge, and is dual to the 16-cell. Every
|
|
n-dimensional space has a cube analogue or measure polytope.`,
|
|
};
|
|
}
|
|
|
|
|
|
const CELL24_INDEXING = {
|
|
x: { y: 1, z: 3, w: 2 },
|
|
y: { z: 2, w: 3 },
|
|
z: { w: 1 }
|
|
};
|
|
|
|
|
|
function node_by_id(nodes, nid) {
|
|
const ns = nodes.filter((n) => n.id === nid);
|
|
return ns[0];
|
|
}
|
|
|
|
|
|
export const cell24 = () => {
|
|
const nodes = PERMUTE.coordinates([0, 0, 1, 1], 0);
|
|
|
|
for( const n of nodes ) {
|
|
const axes = ['x', 'y', 'z', 'w'].filter((a) => n[a] !== 0);
|
|
n.label = CELL24_INDEXING[axes[0]][axes[1]];
|
|
}
|
|
|
|
scale_nodes(nodes, Math.sqrt(2) / 2);
|
|
index_nodes(nodes);
|
|
const links = auto_detect_edges(nodes, 8);
|
|
links.map((l) => l.label = 0);
|
|
|
|
for( const p of [ 1, 2, 3 ] ) {
|
|
const nodes16 = nodes.filter((n) => n.label === p);
|
|
const links16 = auto_detect_edges(nodes16, 6);
|
|
links16.map((l) => l.label = p);
|
|
links.push(...links16);
|
|
}
|
|
// links.map((l) => {
|
|
// const ls = [ l.source, l.target ].map((nid) => node_by_id(nodes, nid).label);
|
|
// for ( const c of [1, 2, 3] ) {
|
|
// if( ! ls.includes(c) ) {
|
|
// l.label = c
|
|
// }
|
|
// }
|
|
// });
|
|
|
|
return {
|
|
name: '24-cell',
|
|
nodes: nodes,
|
|
links: links,
|
|
base: {},
|
|
options: [
|
|
{ name: 'none', links: [ 0 ] },
|
|
{ name: 'one 16-cell', links: [ 0, 1 ] },
|
|
{ name: 'three 16-cells', links: [ 0, 1, 2, 3 ] }
|
|
],
|
|
description: `A unique object without an exact analogue in higher
|
|
or lower dimensions, the 24-cell is made of twenty-four octahedra
|
|
joined at 96 faces, with three around each edge. The 24-cell is
|
|
self-dual.`,
|
|
};
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// face detection for the 120-cell
|
|
|
|
// NOTE: all of these return node ids, not nodes
|
|
|
|
// return all the links which connect to a node
|
|
|
|
function nodes_links(links, nodeid) {
|
|
return links.filter((l) => l.source === nodeid || l.target === nodeid);
|
|
}
|
|
|
|
// filter to remove a link to a given id from a set of links
|
|
|
|
function not_to_this(link, nodeid) {
|
|
return !(link.source === nodeid || link.target === nodeid);
|
|
}
|
|
|
|
// given nodes n1, n2, return all neighbours of n2 which are not n1
|
|
|
|
function unmutuals(links, n1id, n2id) {
|
|
const nlinks = nodes_links(links, n2id).filter((l) => not_to_this(l, n1id));
|
|
return nlinks.map((l) => {
|
|
if( l.source === n2id ) {
|
|
return l.target;
|
|
} else {
|
|
return l.source;
|
|
}
|
|
})
|
|
}
|
|
|
|
|
|
function fingerprint(ids) {
|
|
const sids = [...ids];
|
|
sids.sort();
|
|
return sids.join(',');
|
|
}
|
|
|
|
|
|
|
|
function auto_120cell_faces(links) {
|
|
const faces = [];
|
|
const seen = {};
|
|
let id = 1;
|
|
for( const edge of links ) {
|
|
const v1 = edge.source;
|
|
const v2 = edge.target;
|
|
const n1 = unmutuals(links, v2, v1);
|
|
const n2 = unmutuals(links, v1, v2);
|
|
const shared = [];
|
|
for( const a of n1 ) {
|
|
const an = unmutuals(links, v1, a);
|
|
for( const d of n2 ) {
|
|
const dn = unmutuals(links, v2, d);
|
|
for( const x of an ) {
|
|
for( const y of dn ) {
|
|
if( x == y ) {
|
|
shared.push([v1, a, x, d, v2])
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if( shared.length !== 3 ) {
|
|
console.log(`Bad shared faces for ${edge.id} ${v1} ${v2}`);
|
|
}
|
|
for( const face of shared ) {
|
|
const fp = fingerprint(face);
|
|
if( !seen[fp] ) {
|
|
faces.push({ id: id, nodes: face });
|
|
id++;
|
|
seen[fp] = true;
|
|
}
|
|
}
|
|
}
|
|
return faces;
|
|
}
|
|
|
|
|
|
|
|
export function make_120cell_vertices() {
|
|
const phi = 0.5 * (1 + Math.sqrt(5));
|
|
const r5 = Math.sqrt(5);
|
|
const phi2 = phi * phi;
|
|
const phiinv = 1 / phi;
|
|
const phi2inv = 1 / phi2;
|
|
|
|
const nodes = [
|
|
PERMUTE.coordinates([0, 0, 2, 2], 0),
|
|
PERMUTE.coordinates([1, 1, 1, r5], 0),
|
|
PERMUTE.coordinates([phi, phi, phi, phi2inv], 0),
|
|
PERMUTE.coordinates([phiinv, phiinv, phiinv, phi2], 0),
|
|
|
|
PERMUTE.coordinates([phi2, phi2inv, 1, 0], 0, true),
|
|
PERMUTE.coordinates([r5, phiinv, phi, 0], 0, true),
|
|
PERMUTE.coordinates([2, 1, phi, phiinv], 0, true),
|
|
].flat();
|
|
index_nodes(nodes);
|
|
scale_nodes(nodes, 0.25 * Math.sqrt(2));
|
|
return nodes;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
function label_nodes(nodes, ids, label) {
|
|
nodes.filter((n) => ids.includes(n.id)).map((n) => n.label = label);
|
|
}
|
|
|
|
|
|
|
|
|
|
function label_faces_120cell(nodes, faces, cfaces, label) {
|
|
const ns = new Set();
|
|
for( const fid of cfaces ) {
|
|
const face = faces.filter((f)=> f.id === fid );
|
|
if( face.length > 0 ) {
|
|
for ( const nid of face[0].nodes ) {
|
|
ns.add(nid);
|
|
}
|
|
}
|
|
}
|
|
label_nodes(nodes, Array.from(ns), label);
|
|
}
|
|
|
|
|
|
function link_labels(nodes, link) {
|
|
const n1 = nodes.filter((n) => n.id === link.source);
|
|
const n2 = nodes.filter((n) => n.id === link.target);
|
|
return [ n1[0].label, n2[0].label ];
|
|
}
|
|
|
|
|
|
// version of the 120-cell where nodes are partitioned by
|
|
// layer and the links follow that
|
|
|
|
export const cell120_layered = (max) => {
|
|
const nodes = make_120cell_vertices();
|
|
const links = auto_detect_edges(nodes, 4);
|
|
|
|
nodes.map((n) => n.label = 9); // make all invisible by default
|
|
|
|
for (const cstr in CELLINDEX.LAYERS120 ) {
|
|
label_nodes(nodes, CELLINDEX.LAYERS120[cstr], Number(cstr));
|
|
}
|
|
|
|
links.map((l) => {
|
|
const labels = link_labels(nodes, l);
|
|
if( labels[0] >= labels[1] ) {
|
|
l.label = labels[0];
|
|
} else {
|
|
l.label = labels[1];
|
|
}
|
|
});
|
|
|
|
const options = [];
|
|
const layers = [];
|
|
|
|
for( const i of [ 0, 1, 2, 3, 4, 5, 6, 7 ] ) {
|
|
layers.push(i);
|
|
options.push({
|
|
name: CELLINDEX.LAYER_NAMES[i],
|
|
links: [...layers],
|
|
nodes: [...layers]
|
|
})
|
|
}
|
|
|
|
return {
|
|
name: '120-cell layered',
|
|
nodes: nodes,
|
|
links: links,
|
|
nolink2opacity: true,
|
|
options: options,
|
|
description: `This version of the 120-cell lets you explore its
|
|
structure by building each layer from the 'north pole' onwards.`,
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
export const cell120_inscribed = () => {
|
|
const nodes = make_120cell_vertices();
|
|
const links = auto_detect_edges(nodes, 4);
|
|
|
|
for( const cstr in CELLINDEX.INDEX120 ) {
|
|
label_nodes(nodes, CELLINDEX.INDEX120[cstr], Number(cstr));
|
|
}
|
|
|
|
links.map((l) => l.label = 0);
|
|
|
|
for( const p of [ 1, 2, 3, 4, 5 ]) {
|
|
const nodes600 = nodes.filter((n) => n.label === p);
|
|
const links600 = auto_detect_edges(nodes600, 12);
|
|
links600.map((l) => l.label = p);
|
|
links.push(...links600);
|
|
}
|
|
|
|
return {
|
|
name: '120-cell',
|
|
nodes: nodes,
|
|
links: links,
|
|
options: [
|
|
{ name: "none", links: [ 0 ]},
|
|
{ name: "one inscribed 600-cell", links: [ 0, 1 ] },
|
|
{ name: "five inscribed 600-cells", links: [ 0, 1, 2, 3, 4, 5 ] }
|
|
],
|
|
description: `The 120-cell is the four-dimensional analogue of the
|
|
dodecahedron, and consists of 120 dodecahedra joined at 720 faces,
|
|
with three dodecahedra around each edge. It is dual to the 600-cell,
|
|
and five 600-cells can be inscribed in its vertices.`,
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
function partition_coord(i, coords, invert) {
|
|
const j = invert ? -i : i;
|
|
if( j >= 0 ) {
|
|
return coords[j];
|
|
}
|
|
return "-" + coords[-j];
|
|
}
|
|
|
|
function partition_fingerprint(n, coords, invert) {
|
|
const p = ['x','y','z','w'].map((a) => partition_coord(n[a], coords, invert));
|
|
const fp = p.join(',');
|
|
return fp;
|
|
}
|
|
|
|
|
|
function label_vertex(n, coords, partition) {
|
|
const fp = partition_fingerprint(n, coords, false);
|
|
if( fp in partition ) {
|
|
return partition[fp];
|
|
} else {
|
|
const ifp = partition_fingerprint(n, coords, true);
|
|
if( ifp in partition ) {
|
|
return partition[ifp];
|
|
}
|
|
console.log(`Map for ${fp} ${ifp} not found`);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
function map_coord(i, coords, values) {
|
|
if( i >= 0 ) {
|
|
return values[coords[i]];
|
|
}
|
|
return -values[coords[-i]];
|
|
}
|
|
|
|
|
|
export function make_600cell_vertices() {
|
|
const coords = {
|
|
0: '0',
|
|
1: '1',
|
|
2: '2',
|
|
3: 't',
|
|
4: 'k'
|
|
};
|
|
const t = 0.5 * (1 + Math.sqrt(5));
|
|
const values = {
|
|
'0': 0,
|
|
'1': 1,
|
|
'2': 2,
|
|
't': t,
|
|
'k': 1 / t
|
|
};
|
|
|
|
const nodes = [
|
|
PERMUTE.coordinates([0, 0, 0, 2], 0),
|
|
PERMUTE.coordinates([1, 1, 1, 1], 0),
|
|
PERMUTE.coordinates([3, 1, 4, 0], 0, true)
|
|
].flat();
|
|
|
|
for( const n of nodes ) {
|
|
n.label = label_vertex(n, coords, CELLINDEX.PARTITION600);
|
|
}
|
|
|
|
for( const n of nodes ) {
|
|
for( const a of [ 'x', 'y', 'z', 'w'] ) {
|
|
n[a] = map_coord(n[a], coords, values);
|
|
}
|
|
}
|
|
|
|
|
|
index_nodes(nodes);
|
|
scale_nodes(nodes, 0.5);
|
|
return nodes;
|
|
}
|
|
|
|
function get_node(nodes, id) {
|
|
const ns = nodes.filter((n) => n.id === id);
|
|
if( ns ) {
|
|
return ns[0]
|
|
} else {
|
|
return undefined;
|
|
}
|
|
}
|
|
|
|
function audit_link_labels(nodes, links) {
|
|
for( const l of links ) {
|
|
const n1 = get_node(nodes, l.source);
|
|
const n2 = get_node(nodes, l.target);
|
|
if( n1.label === n2.label ) {
|
|
console.log(`link ${l.id} joins ${n1.id} ${n2.id} with label ${n2.label}`);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
export const cell600 = () => {
|
|
const nodes = make_600cell_vertices();
|
|
const links = auto_detect_edges(nodes, 12);
|
|
|
|
links.map((l) => l.label = 0);
|
|
|
|
for( const p of [1, 2, 3, 4, 5]) {
|
|
const nodes24 = nodes.filter((n) => n.label === p);
|
|
const links24 = auto_detect_edges(nodes24, 8);
|
|
links24.map((l) => l.label = p);
|
|
links.push(...links24);
|
|
}
|
|
|
|
return {
|
|
name: '600-cell',
|
|
nodes: nodes,
|
|
links: links,
|
|
options: [
|
|
{ name: "none", links: [ 0 ]},
|
|
{ name: "one 24-cell", links: [ 0, 1 ] },
|
|
{ name: "five 24-cells", links: [ 0, 1, 2, 3, 4, 5 ] }
|
|
],
|
|
description: `The 600-cell is the four-dimensional analogue of the
|
|
icosahedron, and consists of 600 tetrahedra joined at 1200 faces
|
|
with five tetrahedra around each edge. It is dual to the 120-cell.
|
|
Its 120 vertices can be partitioned into five sets which form the
|
|
vertices of five inscribed 24-cells.`,
|
|
}
|
|
}
|
|
|
|
|
|
export const cell600_layered = () => {
|
|
const nodes = make_600cell_vertices();
|
|
const links = auto_detect_edges(nodes, 12);
|
|
|
|
nodes.map((n) => n.label = 9); // make all invisible by default
|
|
|
|
for (const cstr in CELLINDEX.LAYERS600 ) {
|
|
label_nodes(nodes, CELLINDEX.LAYERS600[cstr], Number(cstr));
|
|
}
|
|
|
|
links.map((l) => {
|
|
const labels = link_labels(nodes, l);
|
|
if( labels[0] >= labels[1] ) {
|
|
l.label = labels[0];
|
|
} else {
|
|
l.label = labels[1];
|
|
}
|
|
});
|
|
|
|
const options = [];
|
|
const layers = [];
|
|
|
|
for( const i of [ 0, 1, 2, 3, 4, 5, 6, 7 ] ) {
|
|
layers.push(i);
|
|
options.push({
|
|
name: CELLINDEX.LAYER_NAMES[i],
|
|
links: [...layers],
|
|
nodes: [...layers]
|
|
})
|
|
}
|
|
|
|
return {
|
|
name: '600-cell layered',
|
|
nodes: nodes,
|
|
links: links,
|
|
nolink2opacity: true,
|
|
options: options,
|
|
description: `This version of the 600-cell lets you explore its
|
|
structure by building each layer from the 'north pole' onwards.`,
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
export const snub24cell = () => {
|
|
const nodes600 = make_600cell_vertices();
|
|
const links600 = auto_detect_edges(nodes600, 12);
|
|
|
|
const nodes = nodes600.filter((n) => n.label != 1);
|
|
const links = links600.filter((l) => {
|
|
const sn = node_by_id(nodes, l.source);
|
|
const tn = node_by_id(nodes, l.target);
|
|
return sn && tn;
|
|
});
|
|
|
|
links.map((l) => l.label = 0);
|
|
|
|
return {
|
|
name: 'Snub 24-cell',
|
|
nodes: nodes,
|
|
links: links,
|
|
options: [ { name: "--" } ],
|
|
description: `The snub 24-cell is a semiregular polytope which
|
|
connects the 24-cell with the 600-cell. It consists of 24 icosahedra
|
|
and 120 tetrahedra, and is constructed by removing one of the
|
|
five inscribed 24-cells from a 600-cell.`
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
function make_dodecahedron_vertices() {
|
|
const phi = 0.5 * (1 + Math.sqrt(5));
|
|
const phiinv = 1 / phi;
|
|
|
|
const nodes = [
|
|
{ x: 1, y: 1, z: 1, w: 0, label: 4 },
|
|
{ x: 1, y: 1, z: -1, w: 0, label: 3 },
|
|
{ x: 1, y: -1, z: 1, w: 0, label: 3 },
|
|
{ x: 1, y: -1, z: -1, w: 0, label: 2 },
|
|
|
|
{ x: -1, y: 1, z: 1, w: 0, label: 3 },
|
|
{ x: -1, y: 1, z: -1, w: 0, label: 1 },
|
|
{ x: -1, y: -1, z: 1, w: 0, label: 5 },
|
|
{ x: -1, y: -1, z: -1, w: 0, label: 3 },
|
|
|
|
{ x: 0, y: phi, z: phiinv, w: 0, label: 5 },
|
|
{ x: 0, y: phi, z: -phiinv, w: 0 , label: 2 },
|
|
{ x: 0, y: -phi, z: phiinv, w: 0, label: 4 },
|
|
{ x: 0, y: -phi, z: -phiinv, w: 0 , label: 1 },
|
|
|
|
{ x: phiinv, y: 0, z: phi, w: 0 , label: 2},
|
|
{ x: phiinv, y: 0, z: -phi, w: 0 , label: 4},
|
|
{ x: -phiinv, y: 0, z: phi, w: 0 , label: 1},
|
|
{ x: -phiinv, y: 0, z: -phi, w: 0 , label: 5},
|
|
|
|
{ x: phi, y: phiinv, z:0, w: 0 , label: 1},
|
|
{ x: phi, y: -phiinv, z:0, w: 0 , label: 5},
|
|
{ x: -phi, y: phiinv, z:0, w: 0 , label: 4},
|
|
{ x: -phi, y: -phiinv, z:0, w: 0 , label: 2},
|
|
];
|
|
scale_nodes(nodes, 1 / Math.sqrt(3));
|
|
index_nodes(nodes);
|
|
return nodes;
|
|
}
|
|
|
|
export const dodecahedron = () => {
|
|
const nodes = make_dodecahedron_vertices();
|
|
const links = auto_detect_edges(nodes, 3);
|
|
links.map((l) => l.label = 0);
|
|
|
|
for( const p of [ 1, 2, 3, 4, 5 ]) {
|
|
const tetran = nodes.filter((n) => n.label === p);
|
|
const tetral = auto_detect_edges(tetran, 3);
|
|
tetral.map((l) => l.label = p);
|
|
links.push(...tetral);
|
|
}
|
|
|
|
return {
|
|
name: 'Dodecahedron',
|
|
nodes: nodes,
|
|
links: links,
|
|
options: [
|
|
{ name: "none", links: [ 0 ]},
|
|
{ name: "one tetrahedron", links: [ 0, 1 ] },
|
|
{ name: "five tetrahedra", links: [ 0, 1, 2, 3, 4, 5 ] }
|
|
],
|
|
description: `The dodecahedron is a three-dimensional polyhedron
|
|
which is included here so that you can see the partition of its
|
|
vertices into five interlocked tetrahedra. This structure is the
|
|
basis for the partition of the 120-cell's vertices into five
|
|
600-cells.`
|
|
|
|
}
|
|
}
|
|
|
|
|
|
export const tetrahedron = () => {
|
|
const r2 = Math.sqrt(2);
|
|
const r3 = Math.sqrt(3);
|
|
return {
|
|
name: 'Tetrahedron',
|
|
nodes: [
|
|
{id:1, label: 1, x: 2 * r2 / 3, y: 0, z: -1/3, w: 0 },
|
|
{id:2, label: 2, x: -r2 / 3, y: r2 / r3, z: -1/3, w: 0 },
|
|
{id:3, label: 3, x: -r2 / 3, y: -r2 / r3, z: -1/3, w: 0 },
|
|
{id:4, label: 4, x: 0, y: 0, z: 1, w: 0 },
|
|
],
|
|
links: [
|
|
{ id:1, source:1, target: 2},
|
|
{ id:2, source:1, target: 3},
|
|
{ id:3, source:1, target: 4},
|
|
{ id:4, source:2, target: 3},
|
|
{ id:5, source:2, target: 4},
|
|
{ id:6, source:3, target: 4},
|
|
],
|
|
options: [ { name: '--' }],
|
|
description: `The simplest three-dimensional polytope, consisting of four triangles joined at six edges. The 5-cell is its four-dimensional analogue.`,
|
|
};
|
|
};
|
|
|
|
export const octahedron = () => {
|
|
const nodes = [
|
|
{id: 1, label: 1, x: 1, y: 0, z: 0, w: 0},
|
|
{id: 2, label: 1, x: -1, y: 0, z: 0, w: 0},
|
|
{id: 3, label: 2, x: 0, y: 1, z: 0, w: 0},
|
|
{id: 4, label: 2, x: 0, y: -1, z: 0, w: 0},
|
|
{id: 5, label: 3, x: 0, y: 0, z: 1, w: 0},
|
|
{id: 6, label: 3, x: 0, y: 0, z: -1, w: 0},
|
|
];
|
|
const links = [
|
|
{id:1, source: 1, target: 3},
|
|
{id:2, source: 1, target: 4},
|
|
{id:3, source: 1, target: 5},
|
|
{id:4, source: 1, target: 6},
|
|
{id:5, source: 2, target: 3},
|
|
{id:6, source: 2, target: 4},
|
|
{id:7, source: 2, target: 5},
|
|
{id:8, source: 2, target: 6},
|
|
{id:9, source: 3, target: 5},
|
|
{id:10, source: 3, target: 6},
|
|
{id:11, source: 4, target: 5},
|
|
{id:12, source: 4, target: 6},
|
|
]
|
|
links.map((l) => { l.label = 0 });
|
|
return {
|
|
name: 'Octahedron',
|
|
nodes: nodes,
|
|
links: links,
|
|
options: [ { name: '--' }],
|
|
description: `The three-dimensional cross-polytope, the 16-cell is its four-dimensional analogue.`,
|
|
};
|
|
|
|
}
|
|
|
|
export const cube = () => {
|
|
const nodes = [
|
|
{id: 1, label: 1, x: 1, y: 1, z: 1, w: 0},
|
|
{id: 2, label: 2, x: -1, y: 1, z: 1, w: 0},
|
|
{id: 3, label: 2, x: 1, y: -1, z: 1, w: 0},
|
|
{id: 4, label: 1, x: -1, y: -1, z: 1, w: 0},
|
|
{id: 5, label: 2, x: 1, y: 1, z: -1, w: 0},
|
|
{id: 6, label: 1, x: -1, y: 1, z: -1, w: 0},
|
|
{id: 7, label: 1, x: 1, y: -1, z: -1, w: 0},
|
|
{id: 8, label: 2, x: -1, y: -1, z: -1, w: 0},
|
|
];
|
|
scale_nodes(nodes, 1/Math.sqrt(3));
|
|
const links = auto_detect_edges(nodes, 3);
|
|
links.map((l) => { l.label = 0 });
|
|
return {
|
|
name: 'Cube',
|
|
nodes: nodes,
|
|
links: links,
|
|
options: [ { name: '--' }],
|
|
description: `The three-dimensional measure polytope, the tesseract is its four-dimensional analogue.`,
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
function make_icosahedron_vertices() {
|
|
const phi = 0.5 * (1 + Math.sqrt(5));
|
|
|
|
const nodes = [
|
|
{ x: 0, y: 1, z: phi, w: 0, label: 1 },
|
|
{ x: 0, y: -1, z: phi, w: 0, label: 1 },
|
|
{ x: 0, y: 1, z: -phi, w: 0, label: 1 },
|
|
{ x: 0, y: -1, z: -phi, w: 0, label: 1 },
|
|
{ x: 1, y: phi, z: 0, w: 0, label: 2 },
|
|
{ x: -1, y: phi, z: 0, w: 0, label: 2 },
|
|
{ x: 1, y: -phi, z: 0, w: 0, label: 2 },
|
|
{ x: -1, y: -phi, z: 0, w: 0, label: 2 },
|
|
{ x: phi, y: 0, z: 1, w: 0, label: 3},
|
|
{ x: phi, y: 0, z: -1, w: 0, label: 3},
|
|
{ x: -phi, y: 0, z: 1, w: 0, label: 3},
|
|
{ x: -phi, y: 0, z: -1, w: 0, label: 3},
|
|
];
|
|
|
|
scale_nodes(nodes, 1/Math.sqrt((5 + Math.sqrt(5)) / 2));
|
|
index_nodes(nodes);
|
|
return nodes;
|
|
}
|
|
|
|
|
|
|
|
export const icosahedron = () => {
|
|
const nodes = make_icosahedron_vertices();
|
|
const links = auto_detect_edges(nodes, 5);
|
|
links.map((l) => l.label = 0);
|
|
|
|
return {
|
|
name: 'Icosahedron',
|
|
nodes: nodes,
|
|
links: links,
|
|
options: [
|
|
{ name: "--"},
|
|
],
|
|
description: `The icosahedron is a twenty-sided polyhedron and is dual to the dodecahedron. Its four-dimensional analogue is the 600-cell.`
|
|
|
|
}
|
|
}
|
|
|
|
|
|
export const build_all = () => {
|
|
return [
|
|
tetrahedron(),
|
|
octahedron(),
|
|
cube(),
|
|
icosahedron(),
|
|
dodecahedron(),
|
|
cell5(),
|
|
cell16(),
|
|
tesseract(),
|
|
cell24(),
|
|
snub24cell(),
|
|
cell600(),
|
|
cell600_layered(),
|
|
cell120_inscribed(),
|
|
cell120_layered()
|
|
];
|
|
}
|
|
|
|
export const radii = (shape) => {
|
|
return shape.nodes.map(n => Math.sqrt(n.x * n.x + n.y * n.y + n.z * n.z + n.w * n.w))
|
|
} |