fourdjs/explore_120cell.js

318 lines
8.5 KiB
JavaScript

// TODO - try visualising the 5-cells from a vertex on the layered 120-cell
// and get an intuition for how they work with the dodecahedral structure
// Another new approach -
// pick a starting 5-cell
// look at the neighbours on the 120-cell of all of its 5 vertices
// try to find abother 5-cell with these neighbours
// if there's only one, add that to the list and keep going
// if there's more than one, are they disjoint with each other?
import * as POLYTOPES from './polytopes.js';
// exploring more inscriptions of the 120-cell
function choice(a) {
const r = Math.floor(Math.random() * a.length);
return a[r];
}
export function nodes_links(links, nodeid) {
return links.filter((l) => l.source === nodeid || l.target === nodeid);
}
export function linked(links, n1, n2) {
const ls = nodes_links(nodes_links(links, n1), n2);
if( ls.length ) {
return ls[0]
} else {
return false;
}
}
function fingerprint(ids) {
const sids = [...ids];
sids.sort();
return sids.join(',');
}
export function dist(n1, n2) {
return Math.sqrt((n1.x - n2.x) ** 2 + (n1.y - n2.y) ** 2 + (n1.z - n2.z) ** 2 + (n1.w - n2.w) ** 2);
}
export function make_120cell() {
const nodes = POLYTOPES.make_120cell_vertices();
const links = POLYTOPES.auto_detect_edges(nodes, 4);
return {
nodes: nodes,
links: links
}
}
function round_dist(raw) {
return Math.floor(raw * 100000) / 100000;
}
export function distance_groups(cell120) {
// get list of other nodes by distance
// sort them and dump them out
const dists = {};
cell120.nodes.map((n) => {
const draw = dist(cell120.nodes[0], n);
const dtrunc = round_dist(draw);
if( !(dtrunc in dists) ) {
dists[dtrunc] = [];
}
dists[dtrunc].push(n);
});
return dists;
}
function distance_group(cell120, n0, chord) {
const nodes = []
cell120.nodes.map((n) => {
const d = round_dist(dist(n0, n));
if( d == chord ) {
nodes.push(n);
}
});
// filter and return those whose chord is also the same
const equidistant = [];
for( const n1 of nodes ) {
for( const n2 of nodes ) {
if( n2.id > n1.id ) {
if( round_dist(dist(n1, n2)) == chord ) {
equidistant.push([n1, n2]);
}
}
}
}
return equidistant;
}
export function chord_survey() {
const cell120 = POLYTOPES.cell120_inscribed();
const dgroups = distance_groups(cell120);
const dists = Object.keys(dgroups);
dists.sort();
for( const d of dists ) {
const g0 = dgroups[d][0];
dgroups[d].map((g) => {
console.log(`${g0.id}-${g.id}: ${round_dist(dist(g0, g))}`);
});
}
}
function overlap(c1, c2) {
for( const l in c1 ) {
if( c1[l] === c2[l] ) {
return true;
}
}
return false;
}
export function gather_5cells(cell120) {
const CHORD5 = round_dist(Math.sqrt(2.5));
const bins = [];
const all = [];
cell120.nodes.filter((n) => n.label === 1).map((n) => {
const cells = [ ];
const g = distance_group(cell120, n, CHORD5);
for( const pair of g ) {
let seen = false;
for( const cell of cells ) {
const c = Object.values(cell);
if( c.includes(pair[0].id) || c.includes(pair[1].id) ) {
if( !c.includes(pair[0].id) ) {
cell[pair[0].label] = pair[0].id;
}
if( !c.includes(pair[1].id) ) {
cell[pair[1].label] = pair[1].id;
}
seen = true;
break;
}
}
if( !seen ) {
const cell = {};
cell[1]= n.id;
cell[pair[0].label] = pair[0].id;
cell[pair[1].label] = pair[1].id;
cells.push(cell);
}
}
all.push(...cells);
});
return all;
}
function audit_5cells(cells) {
// this verifies that for each label (a 600-cell set), each of its
// vertices is in exactly 7 5-cells. It checks out.
['1','2','3','4','5'].map((l) => {
const sets = {};
for( const cell of cells ) {
const lv = cell[l];
if( !(lv in sets) ) {
sets[lv] = [];
}
sets[lv].push(cell);
}
for( const lv in sets ) {
const ok = ( sets[lv].length === 7 ) ? 'ok' : 'miss';
console.log(`${l},${lv},${sets[lv].length},${ok}`);
}
});
}
function try_120_5_cells_fails(cell120, cells, l) {
// iterate over every vertex in the 600-cell defined by label l,
// get all 7 5-cells including that vertex, and add them if they are
// disjoint with what we already have
// this always runs out of disjoint nodes early
const vertices = cell120.nodes.filter((n) => n.label === l);
const cellset = [];
for( const v of vertices ) {
console.log(`Vertex ${v.id}`);
const vcells = cells.filter((c) => c[l] === v.id);
const overlap_any = (cs, c) => {
for( const seen of cs ) {
if( overlap(seen, c) ) {
console.log("overlap");
console.log(c);
return true;
}
}
return false;
}
const disjoint = vcells.filter((c) => ! overlap_any(cellset, c));
console.log(`Found ${disjoint.length} disjoint cells`);
if( disjoint.length > 0 ) {
cellset.push(choice(disjoint));
}
}
console.log(`Found total of ${cellset.length} disjoint cells`);
//console.log(cellset);
}
function overlap_any(cs, c) {
for( const seen of cs ) {
if( overlap(seen, c) ) {
return true;
}
}
return false;
}
function explore_disjoint(cell120, all5, l) {
const a = all5[0];
const overlaps = all5.filter((c) => overlap(c, a));
console.log(a);
console.log(overlaps.length);
console.log(overlaps);
}
// select a five-cell from a starting vertex v
// find a neighbor of v vn on its 600 cell, find all of the 5-cells which include
// vn. Then see if we can find any from that set which are similiar neighbours to
// the other four vertices in the first 5-cell
// the idea is that the 600-cells are a guide to finding the right subset of
// 5-cells
function neighbours600(cell120, vid) {
const v = cell120.nodes.filter((node) => node.id === vid)[0];
const label = v.label;
const links = cell120.links.filter((l) => {
return l.label === v.label && (l.source === v.id || l.target == v.id );
});
const nodes = links.map((l) => {
if( l.source === v.id ) {
return l.target;
} else {
return l.source;
}
});
return nodes;
}
function cell120node(cell120, nid) {
return cell120.nodes.filter((n) => n.id === nid)[0];
}
function node_dist(cell120, aid, bid) {
const a = cell120node(cell120, aid);
const b = cell120node(cell120, bid);
return dist(a, b);
}
function follow_600(cell120, all5) {
const v = cell120.nodes[0];
console.log("Start vertex:");
console.log(v);
const v5s = all5.filter((c5) => c5[v.label] === v.id);
console.log(`Vertex ${v.id} belongs to these 5-cells:`);
console.log(v5s);
const n600s = neighbours600(cell120, v.id);
const n600id = n600s[0];
const n600 = cell120node(cell120, n600id);
console.log("One 600-cell neighbour:");
console.log(n600);
const DIST600 = round_dist(node_dist(cell120, v.id, n600id));
const nv5s = all5.filter((c5) => c5[v.label] === n600id);
console.log(`Vertex ${n600id} belongs to these 5-cells:`);
console.log(nv5s);
console.log("Distances for each pair of 5-cells from the two sets:");
for( const v5a of v5s ) {
for( const v5b of nv5s ) {
let match = true;
const d = {};
for( const label in v5a ) {
d[label] = round_dist(node_dist(cell120, v5a[label], v5b[label]));
if( d[label] != DIST600 ) {
match = false;
}
}
if( match ) {
console.log("--- pair ---");
console.log(v5a);
console.log(v5b);
}
}
}
}
const cell120 = POLYTOPES.cell120_inscribed();
const all5 = gather_5cells(cell120);
follow_600(cell120, all5);