550 lines
12 KiB
JavaScript
550 lines
12 KiB
JavaScript
|
|
//testbed for playing with stuff in node repl
|
|
|
|
const THREE =require('three');
|
|
|
|
function pandita(a) {
|
|
const n = a.length;
|
|
for( let k = n - 2; k >= 0; k-- ) {
|
|
if( a[k] < a[k + 1] ) {
|
|
for( let l = n - 1; l >= 0; l-- ) {
|
|
if( a[k] < a[l] ) {
|
|
const tmp = a[k];
|
|
a[k] = a[l];
|
|
a[l] = tmp;
|
|
const revtail = a.slice(k + 1);
|
|
revtail.reverse();
|
|
for( let i = 0; i < revtail.length; i++ ) {
|
|
a[k + 1 + i] = revtail[i];
|
|
}
|
|
return Math.floor(revtail.length / 2) + 1;
|
|
}
|
|
}
|
|
console.log("Shouldn't get here");
|
|
process.exit();
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
function permutations_old(a) {
|
|
a.sort();
|
|
const ps = [ [...a] ];
|
|
let running = true;
|
|
while( running ) {
|
|
const s = pandita(a);
|
|
if( s ) {
|
|
ps.push([...a]);
|
|
} else {
|
|
running = false;
|
|
}
|
|
}
|
|
return ps;
|
|
}
|
|
|
|
function permutations(a) {
|
|
a.sort();
|
|
const ps = [ [...a] ];
|
|
let running = true;
|
|
while( pandita(a) > 0 ) {
|
|
ps.push([...a]);
|
|
}
|
|
return ps;
|
|
}
|
|
|
|
|
|
function permutations_even(a) {
|
|
a.sort();
|
|
let parity = 'even';
|
|
const ps = [ [...a] ];
|
|
let running = true;
|
|
while( running ) {
|
|
const s = pandita(a);
|
|
if( s ) {
|
|
if( parity === 'even' ) {
|
|
if( s % 2 === 1 ) {
|
|
parity = 'odd';
|
|
}
|
|
} else {
|
|
if( s % 2 === 1 ) {
|
|
parity = 'even';
|
|
}
|
|
}
|
|
if( parity === 'even' ) {
|
|
ps.push([...a]);
|
|
}
|
|
} else {
|
|
running = false;
|
|
}
|
|
}
|
|
return ps;
|
|
}
|
|
|
|
// for a given permutation, say [ 1, 1, 0, 0 ], return all
|
|
// of the valid changes of sign, so:
|
|
// [ [1, 1, 0, 0 ], [ -1, 1, 0, 0 ], [ 1, -1, 0, 0 ], [-1, -1, 0, 0 ]]
|
|
// ie don't do it on the zeros
|
|
|
|
function expand_sign(a, label) {
|
|
const expanded = [];
|
|
const exv = a.map((v) => v ? [ -v, v ] : [ 0 ]);
|
|
for( const xv of exv[0] ) {
|
|
for( const yv of exv[1] ) {
|
|
for( const zv of exv[2] ) {
|
|
for( const wv of exv[3] ) {
|
|
expanded.push({label: label, x: xv, y:yv, z:zv, w:wv});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return expanded;
|
|
}
|
|
|
|
|
|
function coordinates(a, id0=1, even=false) {
|
|
const ps = even ? permutations_even(a) : permutations(a);
|
|
const coords = [];
|
|
for( const p of ps ) {
|
|
const expanded = expand_sign(p, 0);
|
|
coords.push(...expanded);
|
|
}
|
|
return coords;
|
|
}
|
|
|
|
|
|
|
|
function index_nodes(nodes, scale) {
|
|
let i = 1;
|
|
for( const n of nodes ) {
|
|
n["id"] = i;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
function scale_nodes(nodes, scale) {
|
|
for( const n of nodes ) {
|
|
for( const a of [ 'x', 'y', 'z', 'w' ] ) {
|
|
n[a] = scale * n[a];
|
|
}
|
|
}
|
|
}
|
|
|
|
function dist2(n1, n2) {
|
|
return (n1.x - n2.x) ** 2 + (n1.y - n2.y) ** 2 + (n1.z - n2.z) ** 2 + (n1.w - n2.w) ** 2;
|
|
}
|
|
|
|
function auto_detect_edges(nodes, neighbours, debug=false) {
|
|
const seen = {};
|
|
const nnodes = nodes.length;
|
|
const links = [];
|
|
let id = 1;
|
|
for( const n1 of nodes ) {
|
|
const d2 = [];
|
|
for( const n2 of nodes ) {
|
|
d2.push({ d2: dist2(n1, n2), id: n2.id });
|
|
}
|
|
d2.sort((a, b) => a.d2 - b.d2);
|
|
const closest = d2.slice(1, neighbours + 1);
|
|
if( debug ) {
|
|
console.log(`closest = ${closest.length}`);
|
|
console.log(closest);
|
|
}
|
|
for( const e of closest ) {
|
|
const ids = [ n1.id, e.id ];
|
|
ids.sort();
|
|
const fp = ids.join(',');
|
|
if( !seen[fp] ) {
|
|
seen[fp] = true;
|
|
links.push({ id: id, label: 0, source: n1.id, target: e.id });
|
|
id++;
|
|
}
|
|
}
|
|
}
|
|
if( debug ) {
|
|
console.log(`Found ${links.length} edges`)
|
|
}
|
|
return links;
|
|
}
|
|
|
|
|
|
|
|
function make_120cell_vertices() {
|
|
const phi = 0.5 * (1 + Math.sqrt(5));
|
|
const r5 = Math.sqrt(5);
|
|
const phi2 = phi * phi;
|
|
const phiinv = 1 / phi;
|
|
const phi2inv = 1 / phi2;
|
|
|
|
const nodes = [
|
|
coordinates([0, 0, 2, 2], 0),
|
|
coordinates([1, 1, 1, r5], 0),
|
|
coordinates([phi, phi, phi, phi2inv], 0),
|
|
coordinates([phiinv, phiinv, phiinv, phi2], 0),
|
|
|
|
coordinates([phi2, phi2inv, 1, 0], 0, true),
|
|
coordinates([r5, phiinv, phi, 0], 0, true),
|
|
coordinates([2, 1, phi, phiinv], 0, true),
|
|
].flat();
|
|
index_nodes(nodes);
|
|
// scale_nodes(nodes, 0.5);
|
|
return nodes;
|
|
}
|
|
|
|
|
|
|
|
// face detection for the 120-cell
|
|
|
|
// NOTE: all of these return node ids, not nodes
|
|
|
|
// return all the links which connect to a node
|
|
|
|
function nodes_links(links, nodeid) {
|
|
return links.filter((l) => l.source === nodeid || l.target === nodeid);
|
|
}
|
|
|
|
// filter to remove a link to a given id from a set of links
|
|
|
|
function not_to_this(link, nodeid) {
|
|
return !(link.source === nodeid || link.target === nodeid);
|
|
}
|
|
|
|
// given nodes n1, n2, return all neighbours of n2 which are not n1
|
|
|
|
function unmutuals(links, n1id, n2id) {
|
|
const nlinks = nodes_links(links, n2id).filter((l) => not_to_this(l, n1id));
|
|
return nlinks.map((l) => {
|
|
if( l.source === n2id ) {
|
|
return l.target;
|
|
} else {
|
|
return l.source;
|
|
}
|
|
})
|
|
}
|
|
|
|
|
|
function fingerprint(ids) {
|
|
const sids = [...ids];
|
|
sids.sort();
|
|
return sids.join(',');
|
|
}
|
|
|
|
|
|
|
|
function auto_120cell_faces(links) {
|
|
const faces = [];
|
|
const seen = {};
|
|
let id = 1;
|
|
for( const edge of links ) {
|
|
const v1 = edge.source;
|
|
const v2 = edge.target;
|
|
const n1 = unmutuals(links, v2, v1);
|
|
const n2 = unmutuals(links, v1, v2);
|
|
const shared = [];
|
|
for( const a of n1 ) {
|
|
const an = unmutuals(links, v1, a);
|
|
for( const d of n2 ) {
|
|
const dn = unmutuals(links, v2, d);
|
|
for( const x of an ) {
|
|
for( const y of dn ) {
|
|
if( x == y ) {
|
|
shared.push([v1, a, x, d, v2])
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if( shared.length !== 3 ) {
|
|
console.log(`Bad shared faces for ${edge.id} ${v1} ${v2}`);
|
|
}
|
|
for( const face of shared ) {
|
|
const fp = fingerprint(face);
|
|
if( !seen[fp] ) {
|
|
faces.push({ id: id, edge: edge.id, v1: edge.source, v2: edge.target, fingerprint: fp, nodes: face });
|
|
id++;
|
|
seen[fp] = true;
|
|
}
|
|
}
|
|
}
|
|
return faces;
|
|
}
|
|
|
|
|
|
// trying to go from faces to dodecahedra
|
|
|
|
function shared_vertices(f1, f2) {
|
|
return f1.nodes.filter((f) => f2.nodes.includes(f));
|
|
}
|
|
|
|
|
|
function adjacent_faces(f1, f2) {
|
|
// adjacent faces which share an edge, not just a vertex
|
|
const intersect = shared_vertices(f1, f2);
|
|
if( intersect.length < 2 ) {
|
|
return false;
|
|
}
|
|
if( intersect.length > 2 ) {
|
|
console.log(`warning: faces ${f1.id} and ${f2.id} have too many common vertices`);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
function find_adjacent_faces(faces, face) {
|
|
const neighbours = faces.filter((f) => f.id !== face.id && adjacent_faces(f, face));
|
|
return neighbours;
|
|
}
|
|
|
|
|
|
|
|
|
|
function find_dodeca_mutuals(faces, f1, f2) {
|
|
// for any two adjacent faces, find their common neighbours where
|
|
// all three share exactly one vertex (this, I think, guarantees that
|
|
// all are on the same dodecahedron)
|
|
|
|
const n1 = find_adjacent_faces(faces, f1);
|
|
const n2 = find_adjacent_faces(faces, f2);
|
|
const common = n1.filter((f1) => n2.filter((f2) => f1.id === f2.id).length > 0 );
|
|
// there's one extra here - the third which has two nodes in common with
|
|
// both f1 and f2 - filter it out
|
|
const mutuals = common.filter((cf) => {
|
|
const shared = cf.nodes.filter((n) => f1.nodes.includes(n) && f2.nodes.includes(n));
|
|
return shared.length === 1
|
|
});
|
|
return mutuals;
|
|
}
|
|
|
|
function find_dodeca_next(faces, dodeca, f1, f2) {
|
|
// of a pair of mutuals, return the one we haven't already got
|
|
const m = find_dodeca_mutuals(faces, f1, f2);
|
|
if( dodeca.filter((f) => f.id === m[0].id ).length > 0 ) {
|
|
m.shift();
|
|
}
|
|
return m[0];
|
|
}
|
|
|
|
// from any two mutual faces, return all the faces in their dodecahedron
|
|
|
|
function make_dodecahedron(faces, f1, f2) {
|
|
const dodecahedron = [ f1, f2 ];
|
|
|
|
// take f1 as the 'center', get the other four around it from f2
|
|
const fs = find_dodeca_mutuals(faces, f1, f2);
|
|
const f3 = fs[0];
|
|
const f6 = fs[1];
|
|
dodecahedron.push(f3);
|
|
const f4 = find_dodeca_next(faces, dodecahedron, f1, f3);
|
|
dodecahedron.push(f4);
|
|
const f5 = find_dodeca_next(faces, dodecahedron, f1, f4);
|
|
dodecahedron.push(f5);
|
|
dodecahedron.push(f6);
|
|
|
|
// get the next ring
|
|
|
|
const f7 = find_dodeca_next(faces, dodecahedron, f6, f2);
|
|
dodecahedron.push(f7);
|
|
const f8 = find_dodeca_next(faces, dodecahedron, f2, f3);
|
|
dodecahedron.push(f8);
|
|
const f9 = find_dodeca_next(faces, dodecahedron, f3, f4);
|
|
dodecahedron.push(f9);
|
|
const f10 = find_dodeca_next(faces, dodecahedron, f4, f5);
|
|
dodecahedron.push(f10);
|
|
const f11 = find_dodeca_next(faces, dodecahedron, f5, f6);
|
|
dodecahedron.push(f11);
|
|
|
|
// get the last
|
|
|
|
const f12 = find_dodeca_next(faces, dodecahedron, f7, f8);
|
|
dodecahedron.push(f12);
|
|
|
|
return dodecahedron;
|
|
}
|
|
|
|
// goal - a version of the above which collates the nodes to
|
|
// a standard 'layout' on the dodecahedron, so that it's then easy
|
|
// to colour them automatically
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function faces_to_dodecahedron(faces, f1, f2) {
|
|
const dodecahedron = [ f1, f2 ];
|
|
|
|
// take f1 as the 'center', get the other four around it from f2
|
|
const fs = find_dodeca_mutuals(faces, f1, f2);
|
|
const f3 = fs[0];
|
|
const f6 = fs[1];
|
|
dodecahedron.push(f3);
|
|
const f4 = find_dodeca_next(faces, dodecahedron, f1, f3);
|
|
dodecahedron.push(f4);
|
|
const f5 = find_dodeca_next(faces, dodecahedron, f1, f4);
|
|
dodecahedron.push(f5);
|
|
dodecahedron.push(f6);
|
|
|
|
// get the next ring
|
|
|
|
const f7 = find_dodeca_next(faces, dodecahedron, f6, f2);
|
|
dodecahedron.push(f7);
|
|
const f8 = find_dodeca_next(faces, dodecahedron, f2, f3);
|
|
dodecahedron.push(f8);
|
|
const f9 = find_dodeca_next(faces, dodecahedron, f3, f4);
|
|
dodecahedron.push(f9);
|
|
const f10 = find_dodeca_next(faces, dodecahedron, f4, f5);
|
|
dodecahedron.push(f10);
|
|
const f11 = find_dodeca_next(faces, dodecahedron, f5, f6);
|
|
dodecahedron.push(f11);
|
|
|
|
// get the last
|
|
|
|
const f12 = find_dodeca_next(faces, dodecahedron, f7, f8);
|
|
dodecahedron.push(f12);
|
|
|
|
return dodecahedron;
|
|
}
|
|
|
|
// for three faces, return their common vertex (if they have one)
|
|
|
|
function find_dodeca_vertex(f1, f2, f3) {
|
|
const v12 = f1.nodes.filter((n) => f2.nodes.includes(n));
|
|
const v123 = v12.filter((n) => f3.nodes.includes(n));
|
|
if( v123.length === 1 ) {
|
|
return v123[0];
|
|
} else {
|
|
console.log(`warning: faces ${f1.id} ${f2.id} ${f3.id} don't share 1 vertex`);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
function dodecahedron_vertices(dodeca) {
|
|
const VERTEX_MAP = [
|
|
[ 0, 1, 5 ],
|
|
[ 0, 1, 2 ],
|
|
[ 0, 2, 3 ],
|
|
[ 0, 3, 4 ],
|
|
[ 0, 4, 5 ],
|
|
[ 1, 5, 6 ],
|
|
[ 1, 2, 7 ],
|
|
[ 2, 3, 8 ],
|
|
[ 3, 4, 9 ],
|
|
[ 4, 5, 10 ],
|
|
[ 1, 6, 7 ],
|
|
[ 2, 7, 8 ],
|
|
[ 3, 8, 9 ],
|
|
[ 4, 9, 10 ],
|
|
[ 5, 6, 10 ],
|
|
[ 6, 7, 11 ],
|
|
[ 7, 8, 11 ],
|
|
[ 8, 9, 11 ],
|
|
[ 9, 10, 11 ],
|
|
[ 6, 10, 11 ],
|
|
];
|
|
return VERTEX_MAP.map((vs) => find_dodeca_vertex(...vs.map((v) => dd[v])));
|
|
}
|
|
|
|
function dodecahedron_colours(vertices, left) {
|
|
const PARTITION = [
|
|
1, 2, 3, 4, 5, 3, 4, 5, 1, 2, 5, 1, 2, 3, 4, 2, 3, 4, 5, 1,
|
|
];
|
|
const colours = { 1: [], 2: [], 3: [], 4: [], 5: [] };
|
|
for( let i = 0; i < 20; i++ ) {
|
|
colours[PARTITION[i]].push(vertices[i]);
|
|
}
|
|
return colours;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// for a face, pick an edge, and then find the other two faces which
|
|
// share this edge. These can be used as the starting points for the
|
|
// first face's two dodecahedra
|
|
|
|
function find_edge_neighbours(faces, face) {
|
|
const n1 = face.nodes[0];
|
|
const n2 = face.nodes[1];
|
|
return faces.filter((f) => f.id !== face.id && f.nodes.includes(n1) && f.nodes.includes(n2));
|
|
}
|
|
|
|
|
|
// each face is in two dodecahedra: this returns them both
|
|
|
|
function face_to_dodecahedra(faces, f) {
|
|
const edge_friends = find_edge_neighbours(faces, f);
|
|
const d1 = make_dodecahedron(faces, f, edge_friends[0]);
|
|
const d2 = make_dodecahedron(faces, f, edge_friends[1]);
|
|
return [ d1, d2 ];
|
|
}
|
|
|
|
// brute-force calculation of all dodecahedra
|
|
|
|
function dd_fingerprint(dodecahedron) {
|
|
const ids = dodecahedron.map((face) => face.id);
|
|
ids.sort()
|
|
return ids.join(',');
|
|
}
|
|
|
|
function make_120cell_cells(faces) {
|
|
const dodecas = [];
|
|
const seen = {};
|
|
let i = 1;
|
|
for( const face of faces ) {
|
|
const dds = face_to_dodecahedra(faces, face);
|
|
for( const dd of dds ) {
|
|
const fp = dd_fingerprint(dd);
|
|
if( ! (fp in seen) ) {
|
|
//console.log(`added dodeca ${fp}`);
|
|
const d = {
|
|
id: i,
|
|
faces: dd
|
|
}
|
|
dodeca_nodes(d);
|
|
dodecas.push(d);
|
|
i += 1;
|
|
seen[fp] = 1;
|
|
}
|
|
}
|
|
}
|
|
return dodecas;
|
|
}
|
|
|
|
|
|
const cell120 = () => {
|
|
const nodes = make_120cell_vertices();
|
|
const links = auto_detect_edges(nodes, 4);
|
|
return {
|
|
nodes: nodes,
|
|
links: links,
|
|
geometry: {
|
|
node_size: 0.02,
|
|
link_size: 0.02
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
function dodeca_nodes(dd) {
|
|
const ns = new Set();
|
|
for( const face of dd.faces ) {
|
|
for( const node of face.nodes ) {
|
|
ns.add(node);
|
|
}
|
|
}
|
|
dd.nodes = Array.from(ns);
|
|
}
|
|
|
|
|
|
|
|
const nodes = make_120cell_vertices();
|
|
const links = auto_detect_edges(nodes, 4);
|
|
const faces = auto_120cell_faces(links);
|
|
//const dodecas = make_120cell_cells(faces);
|
|
|