fourdjs/indexing_attempts/complicated_vectors.js

262 lines
6.5 KiB
JavaScript

// bad stuff
function find_chords(chords, n) {
return chords.filter((c) => c[0].id === n.id || c[1].id === n.id);
}
function find_neighbours(chords, n) {
const c = find_chords(chords, n);
return c.map((c) => c[0].id === n.id ? c[1] : c[0])
}
// for a list of pairs [n1, n2] (these are nodes which share a common angle
// from a center), find all the groups of nodes which don't appear in a pair
// together
function partition_nodes(pairs) {
let groups = [];
const seen = new Set();
for( const pair of pairs ) {
// both nodes are in a group already
if( seen.has(pair[0]) && seen.has(pair[1]) ) {
continue;
}
let already = false;
// check if either node is already in a group
for( const group of groups ) {
if( group.has(pair[0]) ) {
group.add(pair[1]);
seen.add(pair[1]);
already = true;
continue;
} else if( group.has(pair[1]) ) {
group.has(pair[0]);
seen.has(pair[0]);
already = true;
continue;
}
}
// if neither of the pair was in a former group, start a new group
if( !already ) {
groups.push(new Set(pair));
}
// collapse any groups which now have common elements
groups = collapse_groups(groups);
}
return groups;
}
// given a list of groups, if any have common elements, collapse them
function collapse_groups(groups) {
const new_groups = [ ];
for( group of groups ) {
let collapsed = false;
for( new_group of new_groups ) {
const i = intersection(group, new_group);
if( i.size > 0 ) {
for( const e of group ) {
new_group.add(e);
}
collapsed = true;
break;
}
}
if( !collapsed ) {
new_groups.push(new Set(group));
}
}
return new_groups;
}
function intersection(s1, s2) {
const i = new Set();
for( const e of s1 ) {
if( s2.has(e) ) {
i.add(e)
}
}
return i;
}
function union(s1, s2) {
const u = new Set(s1);
for( const e of s2 ) {
u.add(e);
}
return u;
}
function vector_angle(n1, n2, n3) {
const v1 = new THREE.Vector4(n1.x, n1.y, n1.z, n1.w);
const v2 = new THREE.Vector4(n2.x, n2.y, n2.z, n2.w);
const v3 = new THREE.Vector4(n3.x, n3.y, n3.z, n3.w);
v2.sub(v1);
v3.sub(v1);
const dp = v2.dot(v3);
return Math.acos(dp / ( v2.length() * v3.length()));
}
function neighbour_angles_orig(chords, n) {
const ns = find_neighbours(chords, n);
const angles = {};
for( let i = 0; i < ns.length - 1; i++ ) {
for( let j = i + 1; j < ns.length; j++ ) {
const n2 = ns[i];
const n3 = ns[j];
const a = THREE.MathUtils.radToDeg(vector_angle(n, n2, n3));
const af = (a).toFixed(3);
if( ! (af in angles) ) {
angles[af] = [];
}
angles[af].push([n2.id, n3.id]);
}
}
return angles;
}
function neighbour_angles(chords, n, angle) {
const ns = find_neighbours(chords, n);
const pairs = [];
for( let i = 0; i < ns.length - 1; i++ ) {
for( let j = i + 1; j < ns.length; j++ ) {
const n2 = ns[i];
const n3 = ns[j];
const a = THREE.MathUtils.radToDeg(vector_angle(n, n2, n3));
const af = (a).toFixed(3);
if( af === angle ) {
pairs.push([n2.id, n3.id]);
}
}
}
return pairs;
}
function make_120_partition(nodes, n) {
const chords = find_all_chords(nodes);
const chord3 = chords["1.74806"]; // these are edges of the 600-cells;
const pairs60 = neighbour_angles(chord3, n, "60.000");
const icosas = partition_nodes(pairs60);
n.label = 1;
const angles = icosa_nodes(nodes, icosas[0]);
label_120_partition_r(nodes, chord3, 1, n, angles);
}
// recursive function to label a single 600-cell vertex partition of the
// 120-cell by following icosahedral nets
// this doesn't work! completely - labels only 108-112
function label_120_partition_r(nodes, chords, label, origin, neighbours) {
console.log(`label_120_partition_r ${origin.id}`);
console.log(neighbours.map((n) => n.id).join(', '));
// first try to label everything
const unlabelled = [];
for( const n of neighbours ) {
if( n.label === 0 ) {
console.log(`Labelled ${n.id} ${label}`);
n.label = label;
unlabelled.push(n);
} else if( n.label !== label ) {
console.log(`node ${n.id} is already in group ${n.label}`);
//return false;
}
}
for( const n of unlabelled ) {
// the angles represent two icosahedral pyramids - partition them and
// pick the one which is at 60 to the edge we arrived on
//console.log(`looking for more neighbors for ${n}`);
const pairs60 = neighbour_angles(chords, n, "60.000");
const icosas = partition_nodes(pairs60);
const icosa = choose_icosa(nodes, origin, n, icosas);
const icosa_n = icosa_nodes(nodes, icosa);
console.log(`recursing to ${nice_icosa(nodes,icosa)}`);
return label_120_partition_r(nodes, chords, label, n, icosa_n);
}
}
// given a pair of icosa-sets, pick the one which is at the right angle to
// the incoming vector
function choose_icosa(nodes, origin, n1, icosas) {
for( const icosa of icosas ) {
const inodes = icosa_nodes(nodes, icosa);
const a60 = inodes.map((ni) => {
const a = THREE.MathUtils.radToDeg(vector_angle(n1, origin, ni));
return a.toFixed(3);
});
if( a60.filter((a) => a === "60.000").length > 0 ) {
return icosa;
}
}
console.log("No icosa found!");
return undefined;
}
function icosa_nodes(nodes, icosa) {
return Array.from(icosa).map((nid) => node_by_id(nodes, nid)).sort((a, b) => a.id - b.id);
}
function node_by_id(nodes, nid) {
const ns = nodes.filter((n) => n.id === nid);
return ns[0];
}
function enumerate_icosas(nodes) {
const chords = find_all_chords(nodes);
const chord3 = chords["1.74806"]; // these are edges of the 600-cells;
for( const n of nodes ) {
const pairs60 = neighbour_angles(chord3, n, "60.000");
const icosas = partition_nodes(pairs60);
for( const icosa of icosas ) {
const inodes = icosa_nodes(nodes, icosa);
console.log(icosa_to_csv(n.id, inodes).join(','));
}
}
}
function icosa_to_csv(nid, icosa) {
const cols = [ nid ];
const ia = icosa.map((n) => n.id);
for( let i = 1; i < 601; i++ ) {
if( ia.includes(i) ) {
cols.push(i);
} else {
cols.push('')
}
}
return cols;
}
function start_icosas(nodes, chords, origin) {
const pairs60 = neighbour_angles(chords, origin, "60.000");
return partition_nodes(pairs60).map((i) => nice_icosa(nodes, i));
}
function next_icosa(nodes, chords, origin, nid) {
const n = node_by_id(nodes, nid);
const pairs60 = neighbour_angles(chords, n, "60.000");
const icosas = partition_nodes(pairs60);
const icosa = choose_icosa(nodes, origin, n, icosas);
return nice_icosa(nodes, icosa);
}
function nice_icosa(nodes, icosa) {
return icosa_nodes(nodes, icosa).map((n) => n.id).join(', ');
}