fourdjs/polytopes.js

307 lines
6.2 KiB
JavaScript

import * as PERMUTE from './permute.js';
function index_nodes(nodes, scale) {
let i = 1;
for( const n of nodes ) {
n["id"] = i;
i++;
}
}
function scale_nodes(nodes, scale) {
for( const n of nodes ) {
for( const a of [ 'x', 'y', 'z', 'w' ] ) {
n[a] = scale * n[a];
}
}
}
function dist2(n1, n2) {
return (n1.x - n2.x) ** 2 + (n1.y - n2.y) ** 2 + (n1.z - n2.z) ** 2 + (n1.w - n2.w) ** 2;
}
function auto_detect_edges(nodes, neighbours, debug=false) {
const seen = {};
const nnodes = nodes.length;
const links = [];
let id = 1;
for( const n1 of nodes ) {
const d2 = [];
for( const n2 of nodes ) {
d2.push({ d2: dist2(n1, n2), id: n2.id });
}
d2.sort((a, b) => a.d2 - b.d2);
const closest = d2.slice(1, neighbours + 1);
if( debug ) {
console.log(`closest = ${closest.length}`);
console.log(closest);
}
for( const e of closest ) {
const ids = [ n1.id, e.id ];
ids.sort();
const fp = ids.join(',');
if( !seen[fp] ) {
seen[fp] = true;
links.push({ id: id, label: 0, source: n1.id, target: e.id });
id++;
}
}
}
if( debug ) {
console.log(`Found ${links.length} edges`)
}
return links;
}
// too small and simple to calculate
export const cell5 = () => {
const r5 = Math.sqrt(5);
const r2 = Math.sqrt(2) / 2;
return {
nodes: [
{id:1, x: r2, y: r2, z: r2, w: -r2 / r5 },
{id:2, x: r2, y: -r2, z: -r2, w: -r2 / r5 },
{id:3, x: -r2, y: r2, z: -r2, w: -r2 / r5 },
{id:4, x: -r2, y: -r2, z: r2, w: -r2 / r5 },
{id:5, x: 0, y: 0, z: 0, w: 4 * r2 / r5 },
],
links: [
{ id:1, source:1, target: 2},
{ id:2, source:1, target: 3},
{ id:3, source:1, target: 4},
{ id:4, source:1, target: 5},
{ id:5, source:2, target: 3},
{ id:6, source:2, target: 4},
{ id:7, source:2, target: 5},
{ id:8, source:3, target: 4},
{ id:9, source:3, target: 5},
{ id:10, source:4, target: 5},
],
geometry: {
node_size: 0.02,
link_size: 0.02
}
};
};
export const cell16 = () => {
let nodes = PERMUTE.coordinates([1, 1, 1, 1], 0);
nodes = nodes.filter((n) => n.x * n.y * n.z * n.w > 0);
index_nodes(nodes);
scale_nodes(nodes, 0.75);
const links = auto_detect_edges(nodes, 6);
return {
nodes: nodes,
links: links,
geometry: {
node_size: 0.02,
link_size: 0.02
}
};
};
export const tesseract = () => {
const nodes = PERMUTE.coordinates([1, 1, 1, 1], 0);
index_nodes(nodes);
scale_nodes(nodes, Math.sqrt(2) / 2);
const links = auto_detect_edges(nodes, 4);
return {
nodes: nodes,
links: links,
geometry: {
node_size: 0.02,
link_size: 0.02
}
};
}
export const cell24 = () => {
const nodes = PERMUTE.coordinates([0, 0, 1, 1], 0);
index_nodes(nodes);
const links = auto_detect_edges(nodes, 6);
return {
nodes: nodes,
links: links,
geometry: {
node_size: 0.02,
link_size: 0.02
}
};
}
function make_120cell_vertices() {
const phi = 0.5 * (1 + Math.sqrt(5));
const r5 = Math.sqrt(5);
const phi2 = phi * phi;
const phiinv = 1 / phi;
const phi2inv = 1 / phi2;
const nodes = [
PERMUTE.coordinates([0, 0, 2, 2], 0),
PERMUTE.coordinates([1, 1, 1, r5], 0),
PERMUTE.coordinates([phi, phi, phi, phi2inv], 0),
PERMUTE.coordinates([phiinv, phiinv, phiinv, phi2], 0),
PERMUTE.coordinates([phi2, phi2inv, 1, 0], 0, true),
PERMUTE.coordinates([r5, phiinv, phi, 0], 0, true),
PERMUTE.coordinates([2, 1, phi, phiinv], 0, true),
].flat();
index_nodes(nodes);
scale_nodes(nodes, 0.5);
return nodes;
}
export const cell120 = () => {
const nodes = make_120cell_vertices();
const links = auto_detect_edges(nodes, 4);
return {
nodes: nodes,
links: links,
geometry: {
node_size: 0.02,
link_size: 0.02
}
}
}
function make_600cell_vertices() {
const phi = 0.5 * (1 + Math.sqrt(5));
const nodes = [
PERMUTE.coordinates([0, 0, 0, 2], 0),
PERMUTE.coordinates([1, 1, 1, 1], 1),
PERMUTE.coordinates([phi, 1, 1 / phi, 0], 1, true)
].flat();
index_nodes(nodes);
const groups = partition_nodes_by_distance(nodes, 2);
scale_nodes(nodes, 0.75);
return nodes;
}
// Trying to do this with an algorithm, not just a lookup table.
// I think that all of the vertices which belong to the same 24-cell group
// are 2 units apart.
function partition_nodes_by_distance_bad(nodes, d) {
const groups = [];
const EPSILON = 0.002;
for( const n1 of nodes ) {
let matched = false;
for( const group of groups ) {
for( const n2 of group ) {
const d2 = dist2(n1, n2);
// console.log(`comparing ${n1.id} ${n2.id}`);
// console.log(n1);
// console.log(n2);
// console.log(`${d2} ${Math.abs(d2 - d**2)}`);
if( Math.abs(d2 - d ** 2) < EPSILON ) {
group.push(n1);
matched = true;
// console.log(`Matched ${n1.id} ${n2.id} ${d2}`);
break;
}
}
if( matched ) {
break;
}
}
if(! matched ) {
// console.log(`unmatched node ${n1.id}`);
groups.push([ n1 ]);
}
}
console.log(`Build ${groups.length} groups`);
console.log(groups);
return groups;
}
// find all nodes in nodesid which are d away from n (and are not n)
function nodes_by_distance(nodesid, n, d) {
const EPSILON = 0.02;
const neighbours = Object.keys(nodesid).filter((n1id) => {
if( n1id !== n.id ) {
const d2 = dist2(nodesid[n1id], nodesid[n]);
console.log(`${n} ${n1id} ${d2}`);
return Math.abs(d2 - d ** 2) < EPSILON;
} else {
return false;
}
});
console.log(`neighbours at ${d} ${neighbours}`);
return neighbours;
}
function partition_nodes_by_distance(nodes, d) {
const groups = [];
const nodesid = {};
const EPSILON = 0.02;
for( const node of nodes ) {
nodesid[node.id] = node;
}
while( Object.keys(nodesid).length > 0 ) {
const start = Object.keys(nodesid)[0];
const group = [ start ];
const neighbours = nodes_by_distance(nodesid, n, d).filter((n2) => !(n2 in group));
if( neighbours ) {
group.push(...neighbours);
}
const group = partition_r(nodesid, [ start ], start, d);
console.log(group);
for( const g of group ) {
delete nodesid[g];
}
groups.push(group);
}
}
export const cell600 = () => {
const nodes = make_600cell_vertices();
const links = auto_detect_edges(nodes, 12);
return {
nodes: nodes,
links: links,
geometry: {
node_size: 0.08,
link_size: 0.02
}
}
}