fourdjs/permute_testbed.js

580 lines
12 KiB
JavaScript

// Utilities for generating sets of coordinates based on
// permutations, even permutations and changes of sign.
// Based on https://www.qfbox.info/epermute
const THREE =require('three');
function pandita(a) {
const n = a.length;
for( let k = n - 2; k >= 0; k-- ) {
if( a[k] < a[k + 1] ) {
for( let l = n - 1; l >= 0; l-- ) {
if( a[k] < a[l] ) {
const tmp = a[k];
a[k] = a[l];
a[l] = tmp;
const revtail = a.slice(k + 1);
revtail.reverse();
for( let i = 0; i < revtail.length; i++ ) {
a[k + 1 + i] = revtail[i];
}
return Math.floor(revtail.length / 2) + 1;
}
}
console.log("Shouldn't get here");
process.exit();
}
}
return false;
}
function permutations_old(a) {
a.sort();
const ps = [ [...a] ];
let running = true;
while( running ) {
const s = pandita(a);
if( s ) {
ps.push([...a]);
} else {
running = false;
}
}
return ps;
}
function permutations(a) {
a.sort();
const ps = [ [...a] ];
let running = true;
while( pandita(a) > 0 ) {
ps.push([...a]);
}
return ps;
}
function permutations_even(a) {
a.sort();
let parity = 'even';
const ps = [ [...a] ];
let running = true;
while( running ) {
const s = pandita(a);
if( s ) {
if( parity === 'even' ) {
if( s % 2 === 1 ) {
parity = 'odd';
}
} else {
if( s % 2 === 1 ) {
parity = 'even';
}
}
if( parity === 'even' ) {
ps.push([...a]);
}
} else {
running = false;
}
}
return ps;
}
// for a given permutation, say [ 1, 1, 0, 0 ], return all
// of the valid changes of sign, so:
// [ [1, 1, 0, 0 ], [ -1, 1, 0, 0 ], [ 1, -1, 0, 0 ], [-1, -1, 0, 0 ]]
// ie don't do it on the zeros
function expand_sign(a, label) {
const expanded = [];
const exv = a.map((v) => v ? [ -v, v ] : [ 0 ]);
for( const xv of exv[0] ) {
for( const yv of exv[1] ) {
for( const zv of exv[2] ) {
for( const wv of exv[3] ) {
expanded.push({label: label, x: xv, y:yv, z:zv, w:wv});
}
}
}
}
return expanded;
}
function coordinates(a, id0=1, even=false) {
const ps = even ? permutations_even(a) : permutations(a);
const coords = [];
for( const p of ps ) {
const expanded = expand_sign(p, 0);
coords.push(...expanded);
}
return coords;
}
function index_nodes(nodes, scale) {
let i = 1;
for( const n of nodes ) {
n["id"] = i;
i++;
}
}
function scale_nodes(nodes, scale) {
for( const n of nodes ) {
for( const a of [ 'x', 'y', 'z', 'w' ] ) {
n[a] = scale * n[a];
}
}
}
function dist2(n1, n2) {
return (n1.x - n2.x) ** 2 + (n1.y - n2.y) ** 2 + (n1.z - n2.z) ** 2 + (n1.w - n2.w) ** 2;
}
function auto_detect_edges(nodes, neighbours, debug=false) {
const seen = {};
const nnodes = nodes.length;
const links = [];
let id = 1;
for( const n1 of nodes ) {
const d2 = [];
for( const n2 of nodes ) {
d2.push({ d2: dist2(n1, n2), id: n2.id });
}
d2.sort((a, b) => a.d2 - b.d2);
const closest = d2.slice(1, neighbours + 1);
if( debug ) {
console.log(`closest = ${closest.length}`);
console.log(closest);
}
for( const e of closest ) {
const ids = [ n1.id, e.id ];
ids.sort();
const fp = ids.join(',');
if( !seen[fp] ) {
seen[fp] = true;
links.push({ id: id, label: 0, source: n1.id, target: e.id });
id++;
}
}
}
if( debug ) {
console.log(`Found ${links.length} edges`)
}
return links;
}
// too small and simple to calculate
const cell5 = () => {
const r5 = Math.sqrt(5);
const r2 = Math.sqrt(2) / 2;
return {
nodes: [
{id:1, x: r2, y: r2, z: r2, w: -r2 / r5 },
{id:2, x: r2, y: -r2, z: -r2, w: -r2 / r5 },
{id:3, x: -r2, y: r2, z: -r2, w: -r2 / r5 },
{id:4, x: -r2, y: -r2, z: r2, w: -r2 / r5 },
{id:5, x: 0, y: 0, z: 0, w: 4 * r2 / r5 },
],
links: [
{ id:1, source:1, target: 2},
{ id:2, source:1, target: 3},
{ id:3, source:1, target: 4},
{ id:4, source:1, target: 5},
{ id:5, source:2, target: 3},
{ id:6, source:2, target: 4},
{ id:7, source:2, target: 5},
{ id:8, source:3, target: 4},
{ id:9, source:3, target: 5},
{ id:10, source:4, target: 5},
],
geometry: {
node_size: 0.02,
link_size: 0.02
}
};
};
const cell16 = () => {
let nodes = coordinates([1, 1, 1, 1], 0);
nodes = nodes.filter((n) => n.x * n.y * n.z * n.w > 0);
index_nodes(nodes);
scale_nodes(nodes, 0.75);
const links = auto_detect_edges(nodes, 6);
return {
nodes: nodes,
links: links,
geometry: {
node_size: 0.02,
link_size: 0.02
}
};
};
const tesseract = () => {
const nodes = coordinates([1, 1, 1, 1], 0);
index_nodes(nodes);
scale_nodes(nodes, Math.sqrt(2) / 2);
const links = auto_detect_edges(nodes, 4);
return {
nodes: nodes,
links: links,
geometry: {
node_size: 0.02,
link_size: 0.02
}
};
}
const cell24 = () => {
const nodes = coordinates([0, 0, 1, 1], 0);
index_nodes(nodes);
const links = auto_detect_edges(nodes, 6);
return {
nodes: nodes,
links: links,
geometry: {
node_size: 0.02,
link_size: 0.02
}
};
}
function make_120cell_vertices() {
const phi = 0.5 * (1 + Math.sqrt(5));
const r5 = Math.sqrt(5);
const phi2 = phi * phi;
const phiinv = 1 / phi;
const phi2inv = 1 / phi2;
const nodes = [
coordinates([0, 0, 2, 2], 0),
coordinates([1, 1, 1, r5], 0),
coordinates([phi, phi, phi, phi2inv], 0),
coordinates([phiinv, phiinv, phiinv, phi2], 0),
coordinates([phi2, phi2inv, 1, 0], 0, true),
coordinates([r5, phiinv, phi, 0], 0, true),
coordinates([2, 1, phi, phiinv], 0, true),
].flat();
index_nodes(nodes);
// scale_nodes(nodes, 0.5);
return nodes;
}
const cell120 = () => {
const nodes = make_120cell_vertices();
const links = auto_detect_edges(nodes, 4);
return {
nodes: nodes,
links: links,
geometry: {
node_size: 0.02,
link_size: 0.02
}
}
}
function make_600cell_vertices() {
const phi = 0.5 * (1 + Math.sqrt(5));
const nodes = [
coordinates([0, 0, 0, 2], 0),
coordinates([1, 1, 1, 1], 1),
coordinates([phi, 1, 1 / phi, 0], 1, true)
].flat();
index_nodes(nodes);
return nodes;
}
function find_by_chord(nodesid, n, d) {
const EPSILON = 0.02;
return Object.keys(nodesid).filter((n1) => {
const d2 = dist2(nodesid[n1], nodesid[n]);
return Math.abs(d2 - d ** 2) < EPSILON;
});
}
function has_chord(n1, n2, d) {
const d2 = dist2(n1, n2);
const EPSILON = 0.01;
return Math.abs(d2 - d ** 2) < EPSILON;
}
function find_all_chords(nodes) {
const chords = {};
for( let i = 0; i < nodes.length - 1; i++ ) {
for( let j = i + 1; j < nodes.length; j++ ) {
const n1 = nodes[i];
const n2 = nodes[j];
const chord = Math.sqrt(dist2(n1, n2)).toFixed(5);
if( !(chord in chords) ) {
chords[chord] = [];
}
chords[chord].push([n1, n2]);
}
}
return chords;
}
const cell600 = () => {
const nodes = make_600cell_vertices();
const links = auto_detect_edges(nodes, 12);
return {
nodes: nodes,
links: links,
geometry: {
node_size: 0.08,
link_size: 0.02
}
}
}
function find_chords(chords, n) {
return chords.filter((c) => c[0].id === n.id || c[1].id === n.id);
}
function find_neighbours(chords, n) {
const c = find_chords(chords, n);
return c.map((c) => c[0].id === n.id ? c[1] : c[0])
}
// for a list of pairs [n1, n2] (these are nodes which share a common angle
// from a center), find all the groups of nodes which don't appear in a pair
// together
function partition_nodes(pairs) {
let groups = [];
const seen = new Set();
for( const pair of pairs ) {
// both nodes are in a group already
if( seen.has(pair[0]) && seen.has(pair[1]) ) {
continue;
}
let already = false;
// check if either node is already in a group
for( const group of groups ) {
if( group.has(pair[0]) ) {
group.add(pair[1]);
seen.add(pair[1]);
already = true;
continue;
} else if( group.has(pair[1]) ) {
group.has(pair[0]);
seen.has(pair[0]);
already = true;
continue;
}
}
// if neither of the pair was in a former group, start a new group
if( !already ) {
groups.push(new Set(pair));
}
// collapse any groups which now have common elements
groups = collapse_groups(groups);
}
return groups;
}
// given a list of groups, if any have common elements, collapse them
function collapse_groups(groups) {
const new_groups = [ ];
for( group of groups ) {
let collapsed = false;
for( new_group of new_groups ) {
const i = intersection(group, new_group);
if( i.size > 0 ) {
for( const e of group ) {
new_group.add(e);
}
collapsed = true;
break;
}
}
if( !collapsed ) {
new_groups.push(new Set(group));
}
}
return new_groups;
}
function intersection(s1, s2) {
const i = new Set();
for( const e of s1 ) {
if( s2.has(e) ) {
i.add(e)
}
}
return i;
}
function union(s1, s2) {
const u = new Set(s1);
for( const e of s2 ) {
u.add(e);
}
return u;
}
function vector_angle(n1, n2, n3) {
const v1 = new THREE.Vector4(n1.x, n1.y, n1.z, n1.w);
const v2 = new THREE.Vector4(n2.x, n2.y, n2.z, n2.w);
const v3 = new THREE.Vector4(n3.x, n3.y, n3.z, n3.w);
v2.sub(v1);
v3.sub(v1);
const dp = v2.dot(v3);
return Math.acos(dp / ( v2.length() * v3.length()));
}
function neighbour_angles_orig(chords, n) {
const ns = find_neighbours(chords, n);
const angles = {};
for( let i = 0; i < ns.length - 1; i++ ) {
for( let j = i + 1; j < ns.length; j++ ) {
const n2 = ns[i];
const n3 = ns[j];
const a = THREE.MathUtils.radToDeg(vector_angle(n, n2, n3));
const af = (a).toFixed(3);
if( ! (af in angles) ) {
angles[af] = [];
}
angles[af].push([n2.id, n3.id]);
}
}
return angles;
}
function neighbour_angles(chords, n, angle) {
const ns = find_neighbours(chords, n);
const pairs = [];
for( let i = 0; i < ns.length - 1; i++ ) {
for( let j = i + 1; j < ns.length; j++ ) {
const n2 = ns[i];
const n3 = ns[j];
const a = THREE.MathUtils.radToDeg(vector_angle(n, n2, n3));
const af = (a).toFixed(3);
if( af === angle ) {
pairs.push([n2.id, n3.id]);
}
}
}
return pairs;
}
function make_120_partition(nodes, n) {
const chords = find_all_chords(nodes);
const chord3 = chords["1.74806"]; // these are edges of the 600-cells;
const pairs60 = neighbour_angles(chord3, n, "60.000");
const icosas = partition_nodes(pairs60);
const angles = icosa_nodes(nodes, icosas[0]);
label_120_partition_r(nodes, chord3, 1, n, angles);
}
// recursive function to label a single 600-cell vertex partition of the
// 120-cell by following icosahedral nets
function label_120_partition_r(nodes, chords, label, origin, neighbours) {
console.log(`label_120_partition_r`);
console.log(origin);
console.log(neighbours.map((n) => n.id));
for( const n of neighbours ) {
if( n.label === 0 ) {
n.label = label;
console.log(`Added ${n.id} to group ${label}`);
// the angles represent two icosahedral pyramids - partition them and
// pick the one which is at 60 to the edge we arrived on
console.log(`looking for more neighbors for ${n}`);
const pairs60 = neighbour_angles(chords, n, "60.000");
const icosas = partition_nodes(pairs60);
const icosa = choose_icosa(nodes, origin, n, icosas);
const icosa_n = icosa_nodes(nodes, icosa);
return label_120_partition_r(nodes, chords, label, n, icosa_n);
} else {
if( n.label !== label ) {
console.log(`node ${n.id} is already in group ${n.label}`);
return false;
}
}
}
}
// given a pair of icosa-sets, pick the one which is at the right angle to
// the incoming vector
function choose_icosa(nodes, origin, n1, icosas) {
for( const icosa of icosas ) {
const inodes = icosa_nodes(nodes, icosa);
const a60 = inodes.map((ni) => {
const a = THREE.MathUtils.radToDeg(vector_angle(n1, origin, ni));
return a.toFixed(3);
});
if( a60.filter((a) => a === "60.000").length > 0 ) {
return icosa;
}
}
console.log("No icosa found!");
return undefined;
}
function icosa_nodes(nodes, icosa) {
return Array.from(icosa).map((nid) => node_by_id(nodes, nid));
}
function node_by_id(nodes, nid) {
const ns = nodes.filter((n) => n.id === nid);
return ns[0];
}
const nodes = make_120cell_vertices();
// const chords = find_all_chords(nodes);
// const chord3 = chords["1.74806"]; // these are edges of the 600-cells;
// const pairs60 = neighbour_angles(chord3, nodes[0], "60.000");
// const icosas = partition_nodes(pairs60);