
exit 0
else

#For each key passed
for key in $keys; do

#Check if it�s password protected
protected=$(ssh-keygen -y -P "" -f ~/.ssh/$key 2>&1
->> | grep -o "incorrect passphrase supplied")
#If it is, "" will not be a valid password
if ["$protected" == "incorrect passphrase supplied"]; then

#Use script to pass in credentials from pass
to a subshell running ssh-add
{ sleep .3; pass ssh/$key; }
->> | script -q /dev/null -c �DISPLAY= ssh-add ~/.ssh/�$key��

else
#Otherwise we can just load the key
ssh-add ~/.ssh/$key

fi
done

fi

Now the way this works is by combining our profile settings with the script. When we add this
snippet to your .profile or .bash_profile it’ll ensure that the ssh-agent is running whenever you
open a terminal. If it’s already running it just quietly continues.

export SSH_AUTH_SOCK=~/.ssh/ssh-agent.$HOSTNAME.sock
ssh-add -l 2>/dev/null >/dev/null
if [$? -ge 2]; then

ssh-agent -a "$SSH_AUTH_SOCK" >/dev/null
fi

The only reason that works is becuase we’re exporitng SSH_AUTH_SOCK to a specific static
path, normally ssh-agent would just make a random temporary one in /tmp, but doing it this way
ensures that the agent communicates the same way each time.

After that we just add our keys and the little {command; command;} piped argument catches the
interaction from our password manager and brokers it to the ssh key credential prompt. Here let
me show you, we’ll add my primary key!

~|>> sage neuro
Enter passphrase for /home/durrendal/.ssh/id_ed25519:

| Please enter the passphrase to unlock the OpenPGP secret key: |
| "Durrendal <...@...>" |
| 4096-bit RSA key, ID, |
| created 2023-11-19 (main key ID). |
| |
| |
| Passphrase: ___ |
| |
<OK> <Cancel>

