Change short-string approach to use 32 instead of 40 bytes

This commit is contained in:
jun 2025-03-11 12:24:44 +01:00
parent c860a6ccfe
commit 9ddea4bb07
3 changed files with 307 additions and 72 deletions

View File

@ -6,6 +6,9 @@
#include <inttypes.h>
#include <stddef.h>
#define GUF_PLATFORM_LITTLE_ENDIAN
// #define GUF_PLATFORM_BIG_ENDIAN
#if SIZE_MAX == UINT64_MAX
#define GUF_PLATFORM_BITS 64
#elif SIZE_MAX == UINT32_MAX

View File

@ -12,104 +12,120 @@
#include "guf_utf8.h"
#include "guf_hash.h"
typedef enum guf_str_state {
GUF_STR_STATE_INIT = 0,
GUF_STR_STATE_SHORT = 1,
GUF_STR_STATE_VIEW = 2,
GUF_STR_STATE_ALLOC_ERR = 4
} guf_str_state;
// cf. libc++ short-string optimisation: https://joellaity.com/2020/01/31/string.html (last-retrieved 2025-03-10)
typedef struct guf_str_internal_long_ {
size_t capacity; // If long string: capacity's least significant bit always set to 1 (or its most significant bit for big-endian platforms)
size_t size;
char *c_str;
} guf_str_internal_long_;
#define GUF_STR_SSO_BUF_CAP (sizeof(guf_str_internal_long_) - sizeof(unsigned char)) /* 23 bytes on 64-bit platforms, 11 bytes on 32-bit platforms */
#if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L) || (defined(__cplusplus) && __cplusplus >= 201103L)
static_assert(GUF_STR_SSO_BUF_CAP > 0, "GUF_STR_SSO_BUF_CAP < 0 (this is very weird)"); // Basically cannot fail.
static_assert(GUF_STR_SSO_BUF_CAP < 0x80, "GUF_STR_SSO_BUF_CAP >= 128 (no support for platforms with wordsize >= 512-bits)"); // Could fail on hypothetical platforms with 512-bit wordsize (and above).
#endif
typedef struct guf_str_internal_short_ {
unsigned char size; // size overlaps with the first byte of guf_str_internal_long_.capacity [1]
char c_str[GUF_STR_SSO_BUF_CAP];
} guf_str_internal_short_;
/*
[1] The first byte of guf_str_internal_long_.capacity is its least-significant-byte on little-endian
platforms, and its most-significant byte on big-endian platforms.
*/
typedef struct guf_str {
union {
struct heap {
char *c_str;
size_t len, capacity; // len and capacity do not include the null-terminator.
} heap;
struct stack { // Short-string optimisation.
#define GUF_STR_SSO_BUFSIZE (sizeof(struct heap) - sizeof(unsigned char))
#define GUF_STR_SSO_BUFCAP (GUF_STR_SSO_BUFSIZE - 1)
char c_str[GUF_STR_SSO_BUFSIZE];
unsigned char len;
} stack;
} data;
guf_allocator *allocator;
guf_str_state state;
} guf_str;
guf_str_internal_long_ lng;
guf_str_internal_short_ shrt;
} data; // 24 bytes on 64-bit platforms, 12 bytes on 32-bit platforms.
guf_allocator *allocator; // Wasteful (8 bytes on 64-bit platforms...), but keeping this pointer also allows us to have "read-only strings" (a string is read-only if allocator == NULL)
} guf_str; // Total: 32 bytes on 64-bit platforms, 16 bytes on 32-bit platforms.
#define GUF_CSTR_TO_VIEW(CSTR) ((guf_str_view){.str = (CSTR), .len = strlen((CSTR))})
#define GUF_STR_TO_VIEW(GUF_STR_PTR) ((guf_str_view){.str = guf_str_const_cstr((GUF_STR_PTR)), .len = guf_str_len((GUF_STR_PTR))})
#define GUF_CSTR_TO_READONLY_STR(CSTR) ((guf_str){.state = GUF_STR_STATE_VIEW, .allocator = NULL, .data.heap.c_str = CSTR, .data.heap.len = strlen(CSTR), .data.heap.capacity = 0})
#define GUF_CSTR_TO_VIEW(CSTR) ((guf_str_view){.str = (CSTR), .len = (ptrdiff_t)strlen((CSTR))})
#define GUF_STR_TO_VIEW(GUF_STR_PTR) ((guf_str_view){.str = guf_str_const_cstr((GUF_STR_PTR)), .len = (ptrdiff_t)guf_str_len((GUF_STR_PTR))})
#define GUF_CSTR_TO_READONLY_STR(CSTR) ((guf_str){.allocator = NULL, .data.lng.c_str = (CSTR), .data.lng.size = strlen(CSTR) + 1, .data.lng.capacity = 0})
#ifdef __cplusplus
// Standard C++ does not have compound literals like C99...
#define GUF_CSTR_TO_VIEW_CPP(CSTR) guf_str_view{.str = (CSTR), .len = (ptrdiff_t)strlen(CSTR)}
#endif
// Creation:
GUF_STR_KWRDS guf_str *guf_str_init(guf_str *str, guf_str_view str_view);
GUF_STR_KWRDS guf_str *guf_str_init_from_cstr(guf_str *str, const char* c_str);
GUF_STR_KWRDS guf_str *guf_str_init_empty_with_capacity(guf_str *str, size_t capacity);
// guf_str_new functions return GUF_DICT_UNINITIALISED or GUF_STR_UNINITIALISED_FAILED_ALLOC on failure (can be checked with guf_str_alloc_success)
GUF_STR_KWRDS guf_str guf_str_new(guf_str_view str_view);
GUF_STR_KWRDS guf_str guf_str_new_substr(guf_str_view str_view, ptrdiff_t pos, ptrdiff_t len);
GUF_STR_KWRDS guf_str guf_str_new_from_cstr(const char *c_str);
GUF_STR_KWRDS guf_str guf_str_new_empty_with_capacity(size_t capacity);
// Destruction:
GUF_STR_KWRDS void guf_str_free(guf_str *str);
// Modification:
GUF_STR_KWRDS guf_str *guf_str_append(guf_str *str, guf_str_view to_append);
GUF_STR_KWRDS guf_str *guf_str_append_cstr(guf_str *str, const char *cstr_to_append); // Not necessary
GUF_STR_KWRDS guf_str *guf_str_substr(guf_str* str, size_t pos, size_t count);
GUF_STR_KWRDS guf_str *guf_str_reserve(guf_str *str, size_t bufsize);
GUF_STR_KWRDS guf_str *guf_str_shrink_capacity(guf_str *str, size_t shrink_trigger_fac, bool shrink_exact);
GUF_STR_KWRDS char guf_str_pop_back(guf_str *str);
GUF_STR_KWRDS char guf_str_pop_front(guf_str *str);
// Copying and viewing:
GUF_STR_KWRDS guf_str guf_str_substr_cpy(guf_str_view str, size_t pos, size_t count); // not necessary
// guf_str_view:
GUF_STR_KWRDS bool guf_str_view_is_valid(guf_str_view sv);
GUF_STR_KWRDS guf_str guf_str_substr_cpy(guf_str_view str, ptrdiff_t pos, size_t count); // not necessary
GUF_STR_KWRDS guf_str_view guf_substr_view(guf_str_view str, ptrdiff_t pos, ptrdiff_t count);
GUF_STR_KWRDS guf_str_view guf_str_view_trim_left(guf_str_view str);
GUF_STR_KWRDS guf_str_view guf_str_view_trim_right(guf_str_view str);
// Tokenising/Iterating.
GUF_STR_KWRDS guf_str_view guf_str_next_tok(guf_str_view *input, const guf_str_view *delims, ptrdiff_t num_delims, const guf_str_view *preserved_delims, ptrdiff_t num_preserved_delims);
// Indexing:
GUF_STR_KWRDS char *guf_str_at(guf_str *str, size_t idx);
GUF_STR_KWRDS char *guf_str_back(guf_str *str);
GUF_STR_KWRDS char *guf_str_front(guf_str *str);
GUF_STR_KWRDS const char *guf_str_const_cstr(const guf_str *str);
// Metadata retrieval:
GUF_STR_KWRDS size_t guf_str_len(const guf_str *str); // The size (in chars) without the final zero-terminator (size - 1).
GUF_STR_KWRDS size_t guf_str_capacity(const guf_str *str);
GUF_STR_KWRDS bool guf_str_is_stack_allocated(const guf_str *str);
GUF_STR_KWRDS bool guf_str_is_valid(const guf_str *str);
GUF_STR_KWRDS bool guf_str_alloc_success(const guf_str *str);
GUF_STR_KWRDS guf_hash_size_t guf_str_view_hash(const guf_str_view *sv);
GUF_STR_KWRDS uint64_t guf_str_view_hash64(const guf_str_view *sv);
GUF_STR_KWRDS uint32_t guf_str_view_hash32(const guf_str_view *sv);
// Comparison:
GUF_STR_KWRDS bool guf_str_view_equal(const guf_str_view* a, const guf_str_view* b);
GUF_STR_KWRDS bool guf_str_view_equal_val_arg(guf_str_view a_val, guf_str_view b_val);
GUF_STR_KWRDS int guf_str_view_cmp(const void *str_view_a, const void *str_view_b); // For qsort etc.
GUF_STR_KWRDS guf_str_view guf_str_next_tok(guf_str_view *input, const guf_str_view *delims, ptrdiff_t num_delims, const guf_str_view *preserved_delims, ptrdiff_t num_preserved_delims);
// guf_str:
GUF_STR_KWRDS guf_str *guf_str_try_init(guf_str *str, guf_str_view str_view, guf_allocator *alloc, guf_err *err);
GUF_STR_KWRDS guf_str *guf_str_init(guf_str *str, guf_str_view str_view, guf_allocator *alloc);
GUF_STR_KWRDS guf_str *guf_str_try_init_from_cstr(guf_str *str, const char* c_str, guf_allocator *alloc, guf_err *err);
GUF_STR_KWRDS guf_str *guf_str_init_from_cstr(guf_str *str, const char* c_str, guf_allocator *alloc);
GUF_STR_KWRDS guf_str *guf_str_init_empty(guf_str *str, guf_allocator *alloc);
GUF_STR_KWRDS guf_str guf_str_try_new(guf_str_view str_view, guf_allocator *alloc, guf_err *err);
GUF_STR_KWRDS guf_str guf_str_new(guf_str_view str_view, guf_allocator *alloc);
GUF_STR_KWRDS guf_str guf_str_try_new_from_cstr(const char *c_str, guf_allocator *alloc, guf_err *err);
GUF_STR_KWRDS guf_str guf_str_new_from_cstr(const char *c_str, guf_allocator *alloc);
GUF_STR_KWRDS guf_str guf_str_new_empty(guf_allocator *alloc);
GUF_STR_KWRDS guf_str guf_str_try_new_substr(guf_str_view str_view, ptrdiff_t pos, ptrdiff_t len, guf_allocator *alloc, guf_err *err);
GUF_STR_KWRDS guf_str guf_str_new_substr(guf_str_view str_view, ptrdiff_t pos, ptrdiff_t len, guf_allocator *alloc);
GUF_STR_KWRDS bool guf_str_equal(const guf_str *a, const guf_str *b);
GUF_STR_KWRDS bool guf_str_equals_cstr(const guf_str *a, const char *c_str);
GUF_STR_KWRDS bool guf_str_equals_strview(const guf_str *a, guf_str_view b);
GUF_STR_KWRDS void guf_str_free(guf_str *str, void *ctx);
GUF_STR_KWRDS guf_str *guf_str_append(guf_str *str, guf_str_view to_append);
GUF_STR_KWRDS guf_str *guf_str_append_cstr(guf_str *str, const char *cstr_to_append); // Not necessary
GUF_STR_KWRDS guf_str *guf_str_substr(guf_str* str, size_t pos, size_t count);
GUF_STR_KWRDS guf_str *guf_str_try_reserve(guf_str *str, ptrdiff_t min_capacity, guf_err *err);
GUF_STR_KWRDS guf_str *guf_str_reserve(guf_str *str, ptrdiff_t min_capacity);
GUF_STR_KWRDS guf_str *guf_str_try_shrink_to_fit(guf_str *str, guf_err *err);
GUF_STR_KWRDS guf_str *guf_str_shrink_to_fit(guf_str *str);
GUF_STR_KWRDS char guf_str_pop_back(guf_str *str);
GUF_STR_KWRDS char guf_str_pop_front(guf_str *str);
GUF_STR_KWRDS char *guf_str_at(guf_str *str, size_t idx);
GUF_STR_KWRDS char *guf_str_back(guf_str *str);
GUF_STR_KWRDS char *guf_str_front(guf_str *str);
GUF_STR_KWRDS const char *guf_str_const_cstr(const guf_str *str);
GUF_STR_KWRDS size_t guf_str_len(const guf_str *str); // The length (in chars) without the final zero-terminator.
GUF_STR_KWRDS size_t guf_str_capacity(const guf_str *str); // The capacity (in chars) without the final zero-terminator.
GUF_STR_KWRDS bool guf_str_is_short(const guf_str *str);
GUF_STR_KWRDS bool guf_str_is_readonly(const guf_str *str);
#endif
// #define GUF_STR_IMPL_STATIC /*debug*/
#if defined(GUF_STR_IMPL) || defined(GUF_STR_IMPL_STATIC)
#ifdef __cplusplus
#error "Must compile guf_str as C99 (or above) because type-punning with unions is undefined behaviour in C++"
#endif
#include "guf_common.h"
#include <string.h>
#ifdef GUF_STR_IMPL
@ -121,6 +137,224 @@ GUF_STR_KWRDS bool guf_str_equals_strview(const guf_str *a, guf_str_view b);
// TODO: find_first_of
// guf_str:
#if defined(GUF_PLATFORM_LITTLE_ENDIAN)
#define GUF_STR_IS_LONG_MASK ((unsigned char)1) /* binary 0000.0001 */
#define GUF_STR_GET_CAP_MASK (~(size_t)1) /* binary 1111.1111 (1111.1111)* 1111.1110 */
static inline void guf_str_set_lng_cap_(guf_str *str, size_t capacity)
{
GUF_ASSERT(capacity % 2 == 0);
GUF_ASSERT(capacity > GUF_STR_SSO_BUF_CAP);
str->data.lng.capacity = capacity | ((size_t)1);
}
static inline void guf_str_set_shrt_size_(guf_str *str, unsigned char size)
{
GUF_ASSERT(size < GUF_STR_SSO_BUF_CAP && size < 0x80);
str->data.shrt.size = (unsigned char)(size << 1u);
}
#elif defined(GUF_PLATFORM_BIG_ENDIAN)
#define GUF_STR_IS_LONG_MASK ((unsigned char)0x80) /* binary 1000 0000 */
#define GUF_STR_GET_CAP_MASK ((size_t)SIZE_T_MAX >> 1u) /* binary 0111.1111 (1111.1111)* 1111.1111 */
static inline void guf_str_set_lng_cap_(guf_str *str, size_t capacity)
{
GUF_ASSERT(capacity % 2 == 0);
GUF_ASSERT(capacity > GUF_STR_SSO_BUF_CAP);
str->data.lng.capacity = ~GUF_STR_GET_CAP_MASK | (capacity >> 1);
}
static inline void guf_str_set_shrt_size_(guf_str *str, unsigned char size)
{
GUF_ASSERT(size < GUF_STR_SSO_BUF_CAP && size < 0x80);
str->data.shrt.size = size;
}
#else
#error "guf_str: neither GUF_PLATFORM_LITTLE_ENDIAN nor GUF_PLATFORM_BIG_ENDIAN is defined"
#endif
static bool guf_str_is_valid(const guf_str *str)
{
GUF_ASSERT(str);
const bool is_readonly = !str->allocator;
if (is_readonly) {
bool valid_readonly = str->data.lng.c_str && str->data.lng.capacity == 0 && str->data.lng.size > 0;
return valid_readonly;
}
const bool valid_allocator = str->allocator && str->allocator->alloc && str->allocator->free && str->allocator->realloc;
if (!valid_allocator) {
return false;
}
const unsigned char first_byte = str->data.shrt.size; // union type-punning (only legal in C99 and above; undefined behaviour in C++ I think).
const bool is_short = (first_byte & GUF_STR_IS_LONG_MASK) == 0;
if (is_short) {
const size_t size = (str->data.shrt.size >> 1);
return size > 0 && size <= GUF_STR_SSO_BUF_CAP && str->data.shrt.c_str[size - 1] == '\0';
} else {
const size_t cap_with_null = str->data.lng.capacity & ~(size_t)1;
return str->data.lng.c_str && cap_with_null > GUF_STR_SSO_BUF_CAP && str->data.lng.size > 0 && str->data.lng.size <= cap_with_null;
}
}
GUF_STR_KWRDS bool guf_str_is_readonly(const guf_str *str)
{
GUF_ASSERT(guf_str_is_valid(str));
return !str->allocator;
}
GUF_STR_KWRDS bool guf_str_is_short(const guf_str *str)
{
GUF_ASSERT(guf_str_is_valid(str));
if (guf_str_is_readonly(str)) {
return false;
}
const unsigned char first_byte = str->data.shrt.size; // union type-punning (only legal in C99 and above; undefined behaviour in C++ I think).
return (first_byte & GUF_STR_IS_LONG_MASK) == 0;
}
GUF_STR_KWRDS size_t guf_str_capacity(const guf_str *str)
{
GUF_ASSERT(guf_str_is_valid(str));
if (guf_str_is_short(str)) {
return GUF_STR_SSO_BUF_CAP - 1;
} else if (guf_str_is_readonly(str)) {
return 0;
} else {
// Precondition: all capacities for data.lng must be even.
#if defined(GUF_PLATFORM_LITTLE_ENDIAN)
GUF_ASSERT(str->data.lng.capacity & ~GUF_STR_GET_CAP_MASK); // Assert the is_long bit is actually set.
const size_t cap_with_null = str->data.lng.capacity & GUF_STR_GET_CAP_MASK;
#elif defined(GUF_PLATFORM_BIG_ENDIAN)
GUF_ASSERT(str->data.lng.capacity & ~GUF_STR_GET_CAP_MASK); // Assert the is_long bit is actually set.
const size_t cap_with_null = (str->data.lng.capacity & GUF_STR_GET_CAP_MASK) << 1;
#endif
GUF_ASSERT(cap_with_null > 0 && cap_with_null > GUF_STR_SSO_BUF_CAP);
return cap_with_null - 1;
}
}
GUF_STR_KWRDS size_t guf_str_len(const guf_str *str)
{
GUF_ASSERT(guf_str_is_valid(str));
if (guf_str_is_short(str)) {
GUF_ASSERT(str->data.shrt.size > 0);
#if defined(GUF_PLATFORM_LITTLE_ENDIAN)
const size_t size = (str->data.shrt.size >> 1);
#elif defined(GUF_PLATFORM_BIG_ENDIAN)
const size_t size = (str->data.shrt.size);
#endif
GUF_ASSERT(size > 0 && size <= GUF_STR_SSO_BUF_CAP);
return size - 1;
} else {
const size_t size = str->data.lng.size;
GUF_ASSERT(size > 0);
return size - 1;
}
}
// GUF_STR_KWRDS guf_str *guf_str_try_reserve(guf_str *str, ptrdiff_t new_cap, guf_err *err)
// {
// GUF_ASSERT_RELEASE(guf_str_is_valid_writable(str));
// const ptrdiff_t size = guf_str_len(str) + 1;
// const ptrdiff_t old_cap = guf_str_capacity(str);
// if (new_cap <= old_cap) { // Growth not necessary.
// guf_err_set_if_not_null(err, GUF_ERR_NONE);
// return str;
// }
// if (guf_str_is_short(str)) { // a.) Was short string -> need initial allocation.
// GUF_ASSERT(size == GUF_STR_SSO_BUFCAP);
// char *c_str_new = str->allocator->alloc(new_cap, str->allocator->ctx);
// if (!c_str_new) {
// guf_err_set_or_panic(err, GUF_ERR_ALLOC_FAIL, "in guf_str_try_grow_if_necessary: Initial allocation failed.");
// return NULL;
// }
// memcpy(c_str_new, str->data.stack.c_str, str->data.stack.size);
// str->state = GUF_STR_STATE_INIT;
// str->data.heap.c_str = c_str_new;
// str->data.heap.size = size;
// str->data.heap.capacity = new_cap;
// guf_err_set_if_not_null(err, GUF_ERR_NONE);
// return str;
// }
// // b.) Was already allocated -> need to grow existing allocation.
// char *c_str_new = str->allocator->realloc(str->data.heap.c_str, old_cap, new_cap, str->allocator->ctx);
// if (!c_str_new) {
// guf_err_set_or_panic(err, GUF_ERR_ALLOC_FAIL, "in guf_str_try_grow_if_necessary: re-allocation failed.");
// return NULL;
// }
// str->data.heap.c_str = c_str_new;
// str->data.heap.capacity = new_cap;
// guf_err_set_if_not_null(err, GUF_ERR_NONE);
// return str;
// }
// GUF_STR_KWRDS guf_str *guf_str_try_init(guf_str *str, guf_str_view str_view, guf_allocator *alloc, guf_err *err)
// {
// if (!str) {
// guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, "in guf_str_try_init: str is NULL");
// return NULL;
// } else if (!alloc || !alloc->alloc || !alloc->realloc || !alloc->free) {
// guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, "in guf_str_try_init: alloc (or allocs function pointers) is/are NULL");
// return NULL;
// }
// if (!guf_str_view_is_valid(str_view)) {
// guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, "in guf_str_try_init: invalid str_view");
// return NULL;
// }
// str->allocator = alloc;
// str->state = GUF_STR_STATE_SHORT;
// str->data.stack.size = 1;
// str->data.stack.c_str[0] = '\0';
// if (str_view.len == PTRDIFF_MAX) {
// guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, "in guf_str_try_init: str_view.len + 1 would overflow ptrdiff_t");
// return NULL;
// }
// const ptrdiff_t size = str_view.len + 1;
// GUF_ASSERT(size > 0);
// if (size <= GUF_STR_SSO_BUFCAP) { // a) Fits in short-string.
// str->state = GUF_STR_STATE_SHORT;
// GUF_ASSERT(size <= UCHAR_MAX);
// str->data.stack.size = (unsigned char)size;
// memcpy(str->data.stack.c_str, str_view.str, str_view.len);
// str->data.stack.c_str[str_view.len] = '\0';
// guf_err_set_if_not_null(err, GUF_ERR_NONE);
// return str;
// }
// // b) Needs initial allocation.
// guf_str_try_reserve(str, size, err);
// if (err && *err != GUF_ERR_NONE) {
// guf_panic(*err, "in guf_str_try_init: Initial allocation failed");
// return NULL;
// }
// GUF_ASSERT(!guf_str_is_short(str));
// memcpy(str->data.heap.c_str, str_view.str, str_view.len);
// str->data.heap.c_str[str_view.len] = '\0';
// guf_err_set_if_not_null(err, GUF_ERR_NONE);
// return str;
// }
// guf_str_view:
GUF_STR_KWRDS bool guf_str_view_is_valid(guf_str_view sv)
{
if (sv.str) {
return sv.len >= 0;
} else {
return sv.len == 0;
}
}
GUF_STR_KWRDS guf_str_view guf_str_next_tok(guf_str_view *input, const guf_str_view *delims, ptrdiff_t num_delims, const guf_str_view *preserved_delims, ptrdiff_t num_preserved_delims)
{
if (input->len <= 0 || input->str == NULL) {
@ -233,7 +467,6 @@ GUF_STR_KWRDS guf_str_view guf_str_view_trim_right(guf_str_view sv)
return sv;
}
GUF_STR_KWRDS guf_str_view guf_substr_view(guf_str_view str, ptrdiff_t pos, ptrdiff_t count)
{
GUF_ASSERT(str.str);
@ -278,7 +511,6 @@ GUF_STR_KWRDS uint32_t guf_str_view_hash32(const guf_str_view *sv)
return guf_hash32(sv->str, sv->len, GUF_HASH32_INIT);
}
// Comparison:
GUF_STR_KWRDS bool guf_str_view_equal(const guf_str_view* a, const guf_str_view* b)
{
GUF_ASSERT(a && b);