Use least vs fast int types

This commit is contained in:
jun 2025-05-19 09:50:05 +02:00
parent 2355feaa70
commit c54fc75221
9 changed files with 439 additions and 447 deletions

View File

@ -34,10 +34,10 @@
#endif #endif
#if defined(GUF_DICT_32_BIT_HASH) #if defined(GUF_DICT_32_BIT_HASH)
#define GUF_DICT_HASH_T uint_fast32_t #define GUF_DICT_HASH_T uint_least32_t
#define GUF_DICT_HASH_T_MAX GUF_UINT32_MAX #define GUF_DICT_HASH_T_MAX GUF_UINT32_MAX
#elif defined(GUF_DICT_64_BIT_HASH) #elif defined(GUF_DICT_64_BIT_HASH)
#define GUF_DICT_HASH_T uint_fast64_t #define GUF_DICT_HASH_T uint_least64_t
#define GUF_DICT_HASH_T_MAX GUF_UINT64_MAX #define GUF_DICT_HASH_T_MAX GUF_UINT64_MAX
#else #else
#define GUF_DICT_HASH_T guf_hash_size_t #define GUF_DICT_HASH_T guf_hash_size_t

View File

@ -21,18 +21,18 @@
#define GUF_HASH32_INIT UINT32_C(2166136261) #define GUF_HASH32_INIT UINT32_C(2166136261)
#define GUF_HASH64_INIT UINT64_C(14695981039346656037) #define GUF_HASH64_INIT UINT64_C(14695981039346656037)
GUF_HASH_KWRDS uint_fast32_t guf_hash32(const void *data, ptrdiff_t num_bytes, uint_fast32_t hash); // FNV-1a (32 bit) GUF_HASH_KWRDS uint_least32_t guf_hash32(const void *data, ptrdiff_t num_bytes, uint_least32_t hash); // FNV-1a (32 bit)
GUF_HASH_KWRDS uint_fast64_t guf_hash64(const void *data, ptrdiff_t num_bytes, uint_fast64_t hash); // FNV-1a (64 bit) GUF_HASH_KWRDS uint_least64_t guf_hash64(const void *data, ptrdiff_t num_bytes, uint_least64_t hash); // FNV-1a (64 bit)
#ifdef GUF_HASH_32_BIT #ifdef GUF_HASH_32_BIT
typedef uint_fast32_t guf_hash_size_t; typedef uint_least32_t guf_hash_size_t;
#define GUF_HASH_INIT GUF_HASH32_INIT #define GUF_HASH_INIT GUF_HASH32_INIT
#define GUF_HASH_MAX GUF_UINT32_MAX #define GUF_HASH_MAX GUF_UINT32_MAX
static inline guf_hash_size_t guf_hash(const void *data, ptrdiff_t num_bytes, guf_hash_size_t hash) { static inline guf_hash_size_t guf_hash(const void *data, ptrdiff_t num_bytes, guf_hash_size_t hash) {
return guf_hash32(data, num_bytes, hash); return guf_hash32(data, num_bytes, hash);
} }
#else #else
typedef uint_fast64_t guf_hash_size_t; typedef uint_least64_t guf_hash_size_t;
#define GUF_HASH_INIT GUF_HASH64_INIT #define GUF_HASH_INIT GUF_HASH64_INIT
#define GUF_HASH_MAX GUF_UINT64_MAX #define GUF_HASH_MAX GUF_UINT64_MAX
static inline guf_hash_size_t guf_hash(const void *data, ptrdiff_t num_bytes, guf_hash_size_t hash) { static inline guf_hash_size_t guf_hash(const void *data, ptrdiff_t num_bytes, guf_hash_size_t hash) {
@ -46,13 +46,13 @@ GUF_HASH_KWRDS uint_fast64_t guf_hash64(const void *data, ptrdiff_t num_bytes, u
#include "guf_assert.h" #include "guf_assert.h"
GUF_HASH_KWRDS uint_fast32_t guf_hash32(const void *data, ptrdiff_t num_bytes, uint_fast32_t hash) GUF_HASH_KWRDS uint_least32_t guf_hash32(const void *data, ptrdiff_t num_bytes, uint_least32_t hash)
{ {
hash = GUF_UWRAP_32(hash); hash = GUF_UWRAP_32(hash);
GUF_ASSERT_RELEASE(data); GUF_ASSERT_RELEASE(data);
GUF_ASSERT_RELEASE(num_bytes >= 0); GUF_ASSERT_RELEASE(num_bytes >= 0);
const unsigned char *data_bytes = (const unsigned char*)data; // This does not break strict-aliasing rules I think... const unsigned char *data_bytes = (const unsigned char*)data; // This does not break strict-aliasing rules I think...
const uint_fast32_t FNV_32_PRIME = UINT32_C(16777619); const uint_least32_t FNV_32_PRIME = UINT32_C(16777619);
for (ptrdiff_t i = 0; i < num_bytes; ++i) { for (ptrdiff_t i = 0; i < num_bytes; ++i) {
hash = GUF_UWRAP_32(1u * hash ^ data_bytes[i]); hash = GUF_UWRAP_32(1u * hash ^ data_bytes[i]);
hash = GUF_UWRAP_32(1u * hash * FNV_32_PRIME); hash = GUF_UWRAP_32(1u * hash * FNV_32_PRIME);
@ -60,13 +60,13 @@ GUF_HASH_KWRDS uint_fast32_t guf_hash32(const void *data, ptrdiff_t num_bytes, u
return hash; return hash;
} }
GUF_HASH_KWRDS uint_fast64_t guf_hash64(const void *data, ptrdiff_t num_bytes, uint_fast64_t hash) GUF_HASH_KWRDS uint_least64_t guf_hash64(const void *data, ptrdiff_t num_bytes, uint_least64_t hash)
{ {
hash = GUF_UWRAP_64(hash); hash = GUF_UWRAP_64(hash);
GUF_ASSERT_RELEASE(data); GUF_ASSERT_RELEASE(data);
GUF_ASSERT_RELEASE(num_bytes >= 0); GUF_ASSERT_RELEASE(num_bytes >= 0);
const unsigned char *data_bytes = (const unsigned char*)data; // This does not break strict-aliasing rules I think... const unsigned char *data_bytes = (const unsigned char*)data; // This does not break strict-aliasing rules I think...
const uint_fast64_t FNV_64_PRIME = UINT64_C(1099511628211); const uint_least64_t FNV_64_PRIME = UINT64_C(1099511628211);
for (ptrdiff_t i = 0; i < num_bytes; ++i) { for (ptrdiff_t i = 0; i < num_bytes; ++i) {
hash = GUF_UWRAP_64(1u * hash ^ data_bytes[i]); hash = GUF_UWRAP_64(1u * hash ^ data_bytes[i]);
hash = GUF_UWRAP_64(1u * hash * FNV_64_PRIME); hash = GUF_UWRAP_64(1u * hash * FNV_64_PRIME);

View File

@ -16,17 +16,10 @@
#define GUF_MAX_F64_LT_ONE (1.0 - DBL_EPSILON/FLT_RADIX) #define GUF_MAX_F64_LT_ONE (1.0 - DBL_EPSILON/FLT_RADIX)
// Typesafe unsigned integer wrapping functions (generated with libguf/tools/intwrap-gen.py) // Typesafe unsigned integer wrapping functions (generated with libguf/tools/intwrap-gen.py)
static inline uint_least8_t guf_wrap8_uint_least8_t(uint_least8_t a) { return a & GUF_UINT8_MAX; } static inline uint_least8_t guf_wrap8_least_u8(uint_least8_t a) { return a & GUF_UINT8_MAX; }
static inline uint_fast8_t guf_wrap8_uint_fast8_t(uint_fast8_t a) { return a & GUF_UINT8_MAX; } static inline uint_least16_t guf_wrap16_least_u16(uint_least16_t a) { return a & GUF_UINT16_MAX; }
static inline uint_least32_t guf_wrap32_least_u32(uint_least32_t a) { return a & GUF_UINT32_MAX; }
static inline uint_least16_t guf_wrap16_uint_least16_t(uint_least16_t a) { return a & GUF_UINT16_MAX; } static inline uint_least64_t guf_wrap64_least_u64(uint_least64_t a) { return a & GUF_UINT64_MAX; }
static inline uint_fast16_t guf_wrap16_uint_fast16_t(uint_fast16_t a) { return a & GUF_UINT16_MAX; }
static inline uint_least32_t guf_wrap32_uint_least32_t(uint_least32_t a) { return a & GUF_UINT32_MAX; }
static inline uint_fast32_t guf_wrap32_uint_fast32_t(uint_fast32_t a) { return a & GUF_UINT32_MAX; }
static inline uint_least64_t guf_wrap64_uint_least64_t(uint_least64_t a) { return a & GUF_UINT64_MAX; }
static inline uint_fast64_t guf_wrap64_uint_fast64_t(uint_fast64_t a) { return a & GUF_UINT64_MAX; }
static inline unsigned char guf_wrap8_uchar(unsigned char a) { return a & GUF_UINT8_MAX; } // unsigned char: >= 8 bits static inline unsigned char guf_wrap8_uchar(unsigned char a) { return a & GUF_UINT8_MAX; } // unsigned char: >= 8 bits
static inline unsigned short guf_wrap16_ushort(unsigned short a) { return a & GUF_UINT16_MAX; } // unsigned short: >= 16 bits static inline unsigned short guf_wrap16_ushort(unsigned short a) { return a & GUF_UINT16_MAX; } // unsigned short: >= 16 bits
@ -49,17 +42,17 @@ static inline unsigned long long guf_wrap64_ulong_long(unsigned long long a) { r
} }
#endif #endif
static inline uint_fast32_t guf_rotl32_uint_fast32_t(uint_fast32_t x, int k) static inline uint_least32_t guf_rotl32_least_u32(uint_least32_t x, int k)
{ {
GUF_ASSERT(k > 0); GUF_ASSERT(k > 0);
x = guf_wrap32_uint_fast32_t(x); x = guf_wrap32_least_u32(x);
return guf_wrap32_uint_fast32_t( (1u*x << k) | (1u*x >> (32 - k)) ); return guf_wrap32_least_u32( (1u*x << k) | (1u*x >> (32 - k)) );
} }
static inline uint_fast64_t guf_rotl64_uint_fast64_t(uint_fast64_t x, int k) static inline uint_least64_t guf_rotl64_least_u64(uint_least64_t x, int k)
{ {
GUF_ASSERT(k > 0); GUF_ASSERT(k > 0);
x = guf_wrap64_uint_fast64_t(x); x = guf_wrap64_least_u64(x);
return guf_wrap64_uint_fast64_t( (1u*x << k) | (1u*x >> (64 - k)) ); return guf_wrap64_least_u64( (1u*x << k) | (1u*x >> (64 - k)) );
} }
static inline unsigned long guf_rotl32_ulong(unsigned long x, int k) static inline unsigned long guf_rotl32_ulong(unsigned long x, int k)
@ -97,21 +90,21 @@ static inline ptrdiff_t guf_min_ptrdiff_t(ptrdiff_t a, ptrdiff_t b) { return a <
static inline ptrdiff_t guf_max_ptrdiff_t(ptrdiff_t a, ptrdiff_t b) { return a > b ? a : b; } static inline ptrdiff_t guf_max_ptrdiff_t(ptrdiff_t a, ptrdiff_t b) { return a > b ? a : b; }
static inline ptrdiff_t guf_clamp_ptrdiff_t(ptrdiff_t x, ptrdiff_t min, ptrdiff_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; } static inline ptrdiff_t guf_clamp_ptrdiff_t(ptrdiff_t x, ptrdiff_t min, ptrdiff_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; }
static inline int_fast8_t guf_min_i8_fast(int_fast8_t a, int_fast8_t b) { return a < b ? a : b; } static inline int_least8_t guf_min_least_i8(int_least8_t a, int_least8_t b) { return a < b ? a : b; }
static inline int_fast8_t guf_max_i8_fast(int_fast8_t a, int_fast8_t b) { return a > b ? a : b; } static inline int_least8_t guf_max_least_i8(int_least8_t a, int_least8_t b) { return a > b ? a : b; }
static inline int_fast8_t guf_clamp_i8_fast(int_fast8_t x, int_fast8_t min, int_fast8_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; } static inline int_least8_t guf_clamp_least_i8(int_least8_t x, int_least8_t min, int_least8_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; }
static inline int_fast16_t guf_min_i16_fast(int_fast16_t a, int_fast16_t b) { return a < b ? a : b; } static inline int_least16_t guf_min_least_i16(int_least16_t a, int_least16_t b) { return a < b ? a : b; }
static inline int_fast16_t guf_max_i16_fast(int_fast16_t a, int_fast16_t b) { return a > b ? a : b; } static inline int_least16_t guf_max_least_i16(int_least16_t a, int_least16_t b) { return a > b ? a : b; }
static inline int_fast16_t guf_clamp_i16_fast(int_fast16_t x, int_fast16_t min, int_fast16_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; } static inline int_least16_t guf_clamp_least_i16(int_least16_t x, int_least16_t min, int_least16_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; }
static inline int_fast32_t guf_min_i32_fast(int_fast32_t a, int_fast32_t b) { return a < b ? a : b; } static inline int_least32_t guf_min_least_i32(int_least32_t a, int_least32_t b) { return a < b ? a : b; }
static inline int_fast32_t guf_max_i32_fast(int_fast32_t a, int_fast32_t b) { return a > b ? a : b; } static inline int_least32_t guf_max_least_i32(int_least32_t a, int_least32_t b) { return a > b ? a : b; }
static inline int_fast32_t guf_clamp_i32_fast(int_fast32_t x, int_fast32_t min, int_fast32_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; } static inline int_least32_t guf_clamp_least_i32(int_least32_t x, int_least32_t min, int_least32_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; }
static inline int_fast64_t guf_min_i64_fast(int_fast64_t a, int_fast64_t b) { return a < b ? a : b; } static inline int_least64_t guf_min_least_i64(int_least64_t a, int_least64_t b) { return a < b ? a : b; }
static inline int_fast64_t guf_max_i64_fast(int_fast64_t a, int_fast64_t b) { return a > b ? a : b; } static inline int_least64_t guf_max_least_i64(int_least64_t a, int_least64_t b) { return a > b ? a : b; }
static inline int_fast64_t guf_clamp_i64_fast(int_fast64_t x, int_fast64_t min, int_fast64_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; } static inline int_least64_t guf_clamp_least_i64(int_least64_t x, int_least64_t min, int_least64_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; }
static inline float guf_min_f32(float a, float b) { return a < b ? a : b; } static inline float guf_min_f32(float a, float b) { return a < b ? a : b; }
static inline float guf_max_f32(float a, float b) { return a > b ? a : b; } static inline float guf_max_f32(float a, float b) { return a > b ? a : b; }
@ -166,21 +159,21 @@ static inline size_t guf_min_size_t(size_t a, size_t b) { return a < b ? a : b;
static inline size_t guf_max_size_t(size_t a, size_t b) { return a > b ? a : b; } static inline size_t guf_max_size_t(size_t a, size_t b) { return a > b ? a : b; }
static inline size_t guf_clamp_size_t(size_t x, size_t min, size_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; } static inline size_t guf_clamp_size_t(size_t x, size_t min, size_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; }
static inline uint_fast8_t guf_min_u8_fast(uint_fast8_t a, uint_fast8_t b) { return a < b ? a : b; } static inline uint_least8_t guf_min_least_u8(uint_least8_t a, uint_least8_t b) { return a < b ? a : b; }
static inline uint_fast8_t guf_max_u8_fast(uint_fast8_t a, uint_fast8_t b) { return a > b ? a : b; } static inline uint_least8_t guf_max_least_u8(uint_least8_t a, uint_least8_t b) { return a > b ? a : b; }
static inline uint_fast8_t guf_clamp_u8_fast(uint_fast8_t x, uint_fast8_t min, uint_fast8_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; } static inline uint_least8_t guf_clamp_least_u8(uint_least8_t x, uint_least8_t min, uint_least8_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; }
static inline uint_fast16_t guf_min_u16_fast(uint_fast16_t a, uint_fast16_t b) { return a < b ? a : b; } static inline uint_least16_t guf_min_least_u16(uint_least16_t a, uint_least16_t b) { return a < b ? a : b; }
static inline uint_fast16_t guf_max_u16_fast(uint_fast16_t a, uint_fast16_t b) { return a > b ? a : b; } static inline uint_least16_t guf_max_least_u16(uint_least16_t a, uint_least16_t b) { return a > b ? a : b; }
static inline uint_fast16_t guf_clamp_u16_fast(uint_fast16_t x, uint_fast16_t min, uint_fast16_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; } static inline uint_least16_t guf_clamp_least_u16(uint_least16_t x, uint_least16_t min, uint_least16_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; }
static inline uint_fast32_t guf_min_u32_fast(uint_fast32_t a, uint_fast32_t b) { return a < b ? a : b; } static inline uint_least32_t guf_min_least_u32(uint_least32_t a, uint_least32_t b) { return a < b ? a : b; }
static inline uint_fast32_t guf_max_u32_fast(uint_fast32_t a, uint_fast32_t b) { return a > b ? a : b; } static inline uint_least32_t guf_max_least_u32(uint_least32_t a, uint_least32_t b) { return a > b ? a : b; }
static inline uint_fast32_t guf_clamp_u32_fast(uint_fast32_t x, uint_fast32_t min, uint_fast32_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; } static inline uint_least32_t guf_clamp_least_u32(uint_least32_t x, uint_least32_t min, uint_least32_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; }
static inline uint_fast64_t guf_min_u64_fast(uint_fast64_t a, uint_fast64_t b) { return a < b ? a : b; } static inline uint_least64_t guf_min_least_u64(uint_least64_t a, uint_least64_t b) { return a < b ? a : b; }
static inline uint_fast64_t guf_max_u64_fast(uint_fast64_t a, uint_fast64_t b) { return a > b ? a : b; } static inline uint_least64_t guf_max_least_u64(uint_least64_t a, uint_least64_t b) { return a > b ? a : b; }
static inline uint_fast64_t guf_clamp_u64_fast(uint_fast64_t x, uint_fast64_t min, uint_fast64_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; } static inline uint_least64_t guf_clamp_least_u64(uint_least64_t x, uint_least64_t min, uint_least64_t max) { if (x < min) {return min;} if (x > max) {return max;} return x; }
#ifdef UINT8_MAX #ifdef UINT8_MAX
static inline uint8_t guf_min_u8(uint8_t a, uint8_t b) { return a < b ? a : b; } static inline uint8_t guf_min_u8(uint8_t a, uint8_t b) { return a < b ? a : b; }
@ -242,10 +235,10 @@ static inline unsigned long guf_absdiff_long(long a, long b)
static inline unsigned long long guf_absdiff_long_long(long long a, long long b) {return a > b ? (unsigned long long)a - (unsigned long long)b : (unsigned long long)b - (unsigned long long)a;} static inline unsigned long long guf_absdiff_long_long(long long a, long long b) {return a > b ? (unsigned long long)a - (unsigned long long)b : (unsigned long long)b - (unsigned long long)a;}
static inline size_t guf_absdiff_ptrdiff_t(ptrdiff_t a, ptrdiff_t b) {return a > b ? (size_t)a - (size_t)b : (size_t)b - (size_t)a;} static inline size_t guf_absdiff_ptrdiff_t(ptrdiff_t a, ptrdiff_t b) {return a > b ? (size_t)a - (size_t)b : (size_t)b - (size_t)a;}
static inline uint_fast8_t guf_absdiff_int_fast8_t(int_fast8_t a, int_fast8_t b) {return a > b ? GUF_UWRAP_8( (uint_fast8_t)a - (uint_fast8_t)b) : GUF_UWRAP_8( (uint_fast8_t)b - (uint_fast8_t)a);} static inline uint_least8_t guf_absdiff_least_i8(int_least8_t a, int_least8_t b) {return a > b ? GUF_UWRAP_8( (uint_least8_t)a - (uint_least8_t)b) : GUF_UWRAP_8( (uint_least8_t)b - (uint_least8_t)a);}
static inline uint_fast16_t guf_absdiff_int_fast16_t(int_fast16_t a, int_fast16_t b) {return a > b ? GUF_UWRAP_16((uint_fast16_t)a - (uint_fast16_t)b) : GUF_UWRAP_16((uint_fast16_t)b - (uint_fast16_t)a);} static inline uint_least16_t guf_absdiff_least_i16(int_least16_t a, int_least16_t b) {return a > b ? GUF_UWRAP_16((uint_least16_t)a - (uint_least16_t)b) : GUF_UWRAP_16((uint_least16_t)b - (uint_least16_t)a);}
static inline uint_fast32_t guf_absdiff_int_fast32_t(int_fast32_t a, int_fast32_t b) {return a > b ? GUF_UWRAP_32((uint_fast32_t)a - (uint_fast32_t)b) : GUF_UWRAP_32((uint_fast32_t)b - (uint_fast32_t)a);} static inline uint_least32_t guf_absdiff_least_i32(int_least32_t a, int_least32_t b) {return a > b ? GUF_UWRAP_32((uint_least32_t)a - (uint_least32_t)b) : GUF_UWRAP_32((uint_least32_t)b - (uint_least32_t)a);}
static inline uint_fast64_t guf_absdiff_int_fast64_t(int_fast64_t a, int_fast64_t b) {return a > b ? GUF_UWRAP_64((uint_fast64_t)a - (uint_fast64_t)b) : GUF_UWRAP_64((uint_fast64_t)b - (uint_fast64_t)a);} static inline uint_least64_t guf_absdiff_least_i64(int_least64_t a, int_least64_t b) {return a > b ? GUF_UWRAP_64((uint_least64_t)a - (uint_least64_t)b) : GUF_UWRAP_64((uint_least64_t)b - (uint_least64_t)a);}
#if defined(UINT8_MAX) && defined(INT8_MAX) #if defined(UINT8_MAX) && defined(INT8_MAX)
static inline uint8_t guf_absdiff_i8(int8_t a, int8_t b) {return a > b ? (uint8_t)a - (uint8_t)b : (uint8_t)b - (uint8_t)a;} static inline uint8_t guf_absdiff_i8(int8_t a, int8_t b) {return a > b ? (uint8_t)a - (uint8_t)b : (uint8_t)b - (uint8_t)a;}

File diff suppressed because it is too large Load Diff

View File

@ -26,24 +26,24 @@
// State for xoshiro128** 1.1 // State for xoshiro128** 1.1
typedef struct guf_rand32_state { typedef struct guf_rand32_state {
uint_fast32_t s[4]; // Must not be all zero. uint_least32_t s[4]; // Must not be all zero.
} guf_rand32_state; } guf_rand32_state;
// State for xoshiro256** 1.0 // State for xoshiro256** 1.0
typedef struct guf_rand64_state { typedef struct guf_rand64_state {
uint_fast64_t s[4]; // Must not be all zero. uint_least64_t s[4]; // Must not be all zero.
} guf_rand64_state; } guf_rand64_state;
#ifdef GUF_RAND_32_BIT #ifdef GUF_RAND_32_BIT
// Use guf_rand32_state (i.e. xoshiro128** 1.1) as default. // Use guf_rand32_state (i.e. xoshiro128** 1.1) as default.
#define GUF_RAND_MAX GUF_UINT32_MAX #define GUF_RAND_MAX GUF_UINT32_MAX
typedef guf_rand32_state guf_randstate; typedef guf_rand32_state guf_randstate;
typedef uint_fast32_t guf_rand_seed_t; typedef uint_least32_t guf_rand_seed_t;
#else #else
// Use guf_rand64_state (i.e. xoshiro256** 1.0) as default. // Use guf_rand64_state (i.e. xoshiro256** 1.0) as default.
#define GUF_RAND_MAX GUF_UINT64_MAX #define GUF_RAND_MAX GUF_UINT64_MAX
typedef guf_rand64_state guf_randstate; typedef guf_rand64_state guf_randstate;
typedef uint_fast64_t guf_rand_seed_t; typedef uint_least64_t guf_rand_seed_t;
#endif #endif
/* /*
@ -55,8 +55,8 @@ typedef struct guf_rand64_state {
(If you want to initialise the guf_randstate struct manually, you have to ensure yourself the four state-integers aren't all zero.) (If you want to initialise the guf_randstate struct manually, you have to ensure yourself the four state-integers aren't all zero.)
*/ */
GUF_RAND_KWRDS void guf_randstate_init(guf_randstate *state, guf_rand_seed_t seed); GUF_RAND_KWRDS void guf_randstate_init(guf_randstate *state, guf_rand_seed_t seed);
GUF_RAND_KWRDS void guf_rand64_state_init(guf_rand64_state *state, uint_fast64_t seed); GUF_RAND_KWRDS void guf_rand64_state_init(guf_rand64_state *state, uint_least64_t seed);
GUF_RAND_KWRDS void guf_rand32_state_init(guf_rand32_state *state, uint_fast32_t seed); GUF_RAND_KWRDS void guf_rand32_state_init(guf_rand32_state *state, uint_least32_t seed);
/* /*
- guf_randstate_jump(state) - guf_randstate_jump(state)
@ -76,24 +76,24 @@ GUF_RAND_KWRDS void guf_rand32_state_jump(guf_rand32_state *state); // Equivalen
- guf_rand_splitmix32(state) -> u32 in range [0, UINT32_MAX] - guf_rand_splitmix32(state) -> u32 in range [0, UINT32_MAX]
(Very simple rng with only 32-bits of state; used for "scrambling" 32-bit seeds in guf_randstate_init.) (Very simple rng with only 32-bits of state; used for "scrambling" 32-bit seeds in guf_randstate_init.)
*/ */
GUF_RAND_KWRDS uint_fast64_t guf_rand_splitmix64(uint_fast64_t *state); GUF_RAND_KWRDS uint_least64_t guf_rand_splitmix64(uint_least64_t *state);
GUF_RAND_KWRDS uint_fast32_t guf_rand_splitmix32(uint_fast32_t *state); GUF_RAND_KWRDS uint_least32_t guf_rand_splitmix32(uint_least32_t *state);
/* /*
- guf_rand_u32(state) -> u32 in range [0, UINT32_MAX] - guf_rand_u32(state) -> u32 in range [0, UINT32_MAX]
*/ */
GUF_RAND_KWRDS uint_fast32_t guf_rand_u32(guf_randstate *state); GUF_RAND_KWRDS uint_least32_t guf_rand_u32(guf_randstate *state);
GUF_RAND_KWRDS uint_fast32_t guf_rand64_u32(guf_rand64_state *state); GUF_RAND_KWRDS uint_least32_t guf_rand64_u32(guf_rand64_state *state);
GUF_RAND_KWRDS uint_fast32_t guf_rand32_u32(guf_rand32_state *state); GUF_RAND_KWRDS uint_least32_t guf_rand32_u32(guf_rand32_state *state);
/* /*
- guf_rand_u64(state) -> uint64_t (or uint_least64_t) in range [0, UINT64_MAX] - guf_rand_u64(state) -> uint64_t (or uint_least64_t) in range [0, UINT64_MAX]
NOTE: May be slow on 32-bit platforms. NOTE: May be slow on 32-bit platforms.
NOTE: If uint64_t is not available (optional according to the standards), use uint_least64_t (always available in C99 and above). NOTE: If uint64_t is not available (optional according to the standards), use uint_least64_t (always available in C99 and above).
*/ */
GUF_RAND_KWRDS uint_fast64_t guf_rand_u64(guf_randstate *state); GUF_RAND_KWRDS uint_least64_t guf_rand_u64(guf_randstate *state);
GUF_RAND_KWRDS uint_fast64_t guf_rand32_u64(guf_rand32_state *state); GUF_RAND_KWRDS uint_least64_t guf_rand32_u64(guf_rand32_state *state);
GUF_RAND_KWRDS uint_fast64_t guf_rand64_u64(guf_rand64_state *state); GUF_RAND_KWRDS uint_least64_t guf_rand64_u64(guf_rand64_state *state);
/* /*
- guf_rand_f64(state) -> double in range [0.0, 1.0) - guf_rand_f64(state) -> double in range [0.0, 1.0)
@ -133,21 +133,21 @@ GUF_RAND_KWRDS double guf_rand32_range_f64(guf_rand32_state *state, double min,
NOTE: guf_randrange_u32 may be slow on 32-bit platforms (as it calls guf_rand_f64). NOTE: guf_randrange_u32 may be slow on 32-bit platforms (as it calls guf_rand_f64).
This does not apply to guf_randrange_i32 (as it doesn't call guf_rand_f64). This does not apply to guf_randrange_i32 (as it doesn't call guf_rand_f64).
*/ */
GUF_RAND_KWRDS int_fast32_t guf_randrange_i32(guf_randstate *state, int_fast32_t min, int_fast32_t max); GUF_RAND_KWRDS int_least32_t guf_randrange_i32(guf_randstate *state, int_least32_t min, int_least32_t max);
GUF_RAND_KWRDS uint_fast32_t guf_randrange_u32(guf_randstate *state, uint_fast32_t min, uint_fast32_t max); // NOTE: may be slow on 32-bit platforms (as it calls guf_rand_f64). GUF_RAND_KWRDS uint_least32_t guf_randrange_u32(guf_randstate *state, uint_least32_t min, uint_least32_t max); // NOTE: may be slow on 32-bit platforms (as it calls guf_rand_f64).
GUF_RAND_KWRDS int_fast32_t guf_rand64_range_i32(guf_rand64_state *state, int_fast32_t min, int_fast32_t max); GUF_RAND_KWRDS int_least32_t guf_rand64_range_i32(guf_rand64_state *state, int_least32_t min, int_least32_t max);
GUF_RAND_KWRDS uint_fast32_t guf_rand64_range_u32(guf_rand64_state *state, uint_fast32_t min, uint_fast32_t max); GUF_RAND_KWRDS uint_least32_t guf_rand64_range_u32(guf_rand64_state *state, uint_least32_t min, uint_least32_t max);
GUF_RAND_KWRDS int_fast32_t guf_rand32_range_i32(guf_rand32_state *state, int_fast32_t min, int_fast32_t max); GUF_RAND_KWRDS int_least32_t guf_rand32_range_i32(guf_rand32_state *state, int_least32_t min, int_least32_t max);
GUF_RAND_KWRDS uint_fast32_t guf_rand32_range_u32(guf_rand32_state *state, uint_fast32_t min, uint_fast32_t max); // NOTE: may be slow on 32-bit platforms (as it calls guf_rand_f64). GUF_RAND_KWRDS uint_least32_t guf_rand32_range_u32(guf_rand32_state *state, uint_least32_t min, uint_least32_t max); // NOTE: may be slow on 32-bit platforms (as it calls guf_rand_f64).
/* /*
- guf_randrange_i64(state, min, max) -> int64_t in range [min, max] (contrary to the float equivalents, max *is* inclusive) - guf_randrange_i64(state, min, max) -> int64_t in range [min, max] (contrary to the float equivalents, max *is* inclusive)
*/ */
GUF_RAND_KWRDS int_fast64_t guf_randrange_i64(guf_randstate *state, int_fast64_t min, int_fast64_t max); GUF_RAND_KWRDS int_least64_t guf_randrange_i64(guf_randstate *state, int_least64_t min, int_least64_t max);
GUF_RAND_KWRDS int_fast64_t guf_rand64_range_i64(guf_rand64_state *state, int_fast64_t min, int_fast64_t max); GUF_RAND_KWRDS int_least64_t guf_rand64_range_i64(guf_rand64_state *state, int_least64_t min, int_least64_t max);
GUF_RAND_KWRDS int_fast64_t guf_rand32_range_i64(guf_rand32_state *state, int_fast64_t min, int_fast64_t max); GUF_RAND_KWRDS int_least64_t guf_rand32_range_i64(guf_rand32_state *state, int_least64_t min, int_least64_t max);
// Bernoulli-trials: // Bernoulli-trials:
@ -210,11 +210,11 @@ GUF_RAND_KWRDS double guf_rand32_normal_sample_one_f64(guf_rand32_state *state,
splitmix64 written in 2015 by Sebastiano Vigna (vigna@acm.org) (released as public domain) splitmix64 written in 2015 by Sebastiano Vigna (vigna@acm.org) (released as public domain)
cf. https://prng.di.unimi.it/splitmix64.c (last-retrieved 2025-02-11) cf. https://prng.di.unimi.it/splitmix64.c (last-retrieved 2025-02-11)
*/ */
GUF_RAND_KWRDS uint_fast64_t guf_rand_splitmix64(uint_fast64_t *state) GUF_RAND_KWRDS uint_least64_t guf_rand_splitmix64(uint_least64_t *state)
{ {
GUF_ASSERT(state); GUF_ASSERT(state);
*state = GUF_UWRAP_64(*state); *state = GUF_UWRAP_64(*state);
uint_fast64_t z = ( *state = GUF_UWRAP_64(*state + 0x9e3779b97f4a7c15ull) ); uint_least64_t z = ( *state = GUF_UWRAP_64(*state + 0x9e3779b97f4a7c15ull) );
z = GUF_UWRAP_64( GUF_UWRAP_64(z ^ (z >> 30u)) * 0xbf58476d1ce4e5b9ull ); z = GUF_UWRAP_64( GUF_UWRAP_64(z ^ (z >> 30u)) * 0xbf58476d1ce4e5b9ull );
z = GUF_UWRAP_64( GUF_UWRAP_64(z ^ (z >> 27u)) * 0x94d049bb133111ebull ); z = GUF_UWRAP_64( GUF_UWRAP_64(z ^ (z >> 27u)) * 0x94d049bb133111ebull );
return GUF_UWRAP_64(z ^ (z >> 31u)); return GUF_UWRAP_64(z ^ (z >> 31u));
@ -224,16 +224,16 @@ GUF_RAND_KWRDS uint_fast64_t guf_rand_splitmix64(uint_fast64_t *state)
splitmix32 written in 2016 by Kaito Udagawa (released under CC0 <http://creativecommons.org/publicdomain/zero/1.0/>) splitmix32 written in 2016 by Kaito Udagawa (released under CC0 <http://creativecommons.org/publicdomain/zero/1.0/>)
cf. https://github.com/umireon/my-random-stuff/blob/master/xorshift/splitmix32.c (last-retrieved 2025-03-28) cf. https://github.com/umireon/my-random-stuff/blob/master/xorshift/splitmix32.c (last-retrieved 2025-03-28)
*/ */
GUF_RAND_KWRDS uint_fast32_t guf_rand_splitmix32(uint_fast32_t *state) GUF_RAND_KWRDS uint_least32_t guf_rand_splitmix32(uint_least32_t *state)
{ {
GUF_ASSERT(state); GUF_ASSERT(state);
uint_fast32_t z = ( *state = GUF_UWRAP_32(*state + 0x9e3779b9ul) ); uint_least32_t z = ( *state = GUF_UWRAP_32(*state + 0x9e3779b9ul) );
z = GUF_UWRAP_32( GUF_UWRAP_32(z ^ (z >> 16u)) * 0x85ebca6bul ); z = GUF_UWRAP_32( GUF_UWRAP_32(z ^ (z >> 16u)) * 0x85ebca6bul );
z = GUF_UWRAP_32( GUF_UWRAP_32(z ^ (z >> 13u)) * 0xc2b2ae35ul ); z = GUF_UWRAP_32( GUF_UWRAP_32(z ^ (z >> 13u)) * 0xc2b2ae35ul );
return GUF_UWRAP_32(z ^ (z >> 16u)); return GUF_UWRAP_32(z ^ (z >> 16u));
} }
GUF_RAND_KWRDS void guf_rand32_state_init(guf_rand32_state *state, uint_fast32_t seed) GUF_RAND_KWRDS void guf_rand32_state_init(guf_rand32_state *state, uint_least32_t seed)
{ {
for (size_t i = 0; i < GUF_ARR_SIZE(state->s); ++i) { for (size_t i = 0; i < GUF_ARR_SIZE(state->s); ++i) {
state->s[i] = guf_rand_splitmix32(&seed); state->s[i] = guf_rand_splitmix32(&seed);
@ -247,7 +247,7 @@ GUF_RAND_KWRDS void guf_rand32_state_init(guf_rand32_state *state, uint_fast32_t
} }
} }
GUF_RAND_KWRDS void guf_rand64_state_init(guf_rand64_state *state, uint_fast64_t seed) GUF_RAND_KWRDS void guf_rand64_state_init(guf_rand64_state *state, uint_least64_t seed)
{ {
for (size_t i = 0; i < GUF_ARR_SIZE(state->s); ++i) { for (size_t i = 0; i < GUF_ARR_SIZE(state->s); ++i) {
state->s[i] = guf_rand_splitmix64(&seed); state->s[i] = guf_rand_splitmix64(&seed);
@ -270,7 +270,7 @@ GUF_RAND_KWRDS void guf_randstate_init(guf_randstate *state, guf_rand_seed_t see
#endif #endif
} }
GUF_RAND_KWRDS uint_fast32_t guf_rand32_u32(guf_rand32_state *state) GUF_RAND_KWRDS uint_least32_t guf_rand32_u32(guf_rand32_state *state)
{ {
GUF_ASSERT(state); GUF_ASSERT(state);
GUF_ASSERT(state->s[0] || state->s[1] || state->s[2] || state->s[3]); GUF_ASSERT(state->s[0] || state->s[1] || state->s[2] || state->s[3]);
@ -278,15 +278,15 @@ GUF_RAND_KWRDS uint_fast32_t guf_rand32_u32(guf_rand32_state *state)
xoshiro128** 1.1 (public domain) written in 2018 by David Blackman and Sebastiano Vigna (vigna@acm.org) xoshiro128** 1.1 (public domain) written in 2018 by David Blackman and Sebastiano Vigna (vigna@acm.org)
cf. https://prng.di.unimi.it/xoshiro128starstar.c (last-retrieved 2025-02-11) cf. https://prng.di.unimi.it/xoshiro128starstar.c (last-retrieved 2025-02-11)
*/ */
const uint_fast32_t result = GUF_UWRAP_32( guf_rotl32_uint_fast32_t(state->s[1] * 5u, 7) * 9u ); const uint_least32_t result = GUF_UWRAP_32( guf_rotl32_least_u32(state->s[1] * 5u, 7) * 9u );
const uint_fast32_t t = GUF_UWRAP_32( state->s[1] << 9u ); const uint_least32_t t = GUF_UWRAP_32( state->s[1] << 9u );
state->s[2] ^= state->s[0]; state->s[2] ^= state->s[0];
state->s[3] ^= state->s[1]; state->s[3] ^= state->s[1];
state->s[1] ^= state->s[2]; state->s[1] ^= state->s[2];
state->s[0] ^= state->s[3]; state->s[0] ^= state->s[3];
state->s[2] ^= t; state->s[2] ^= t;
state->s[3] = guf_rotl32_uint_fast32_t(state->s[3], 11); state->s[3] = guf_rotl32_least_u32(state->s[3], 11);
state->s[0] = GUF_UWRAP_32(state->s[0]); state->s[0] = GUF_UWRAP_32(state->s[0]);
state->s[1] = GUF_UWRAP_32(state->s[1]); state->s[1] = GUF_UWRAP_32(state->s[1]);
@ -296,12 +296,12 @@ GUF_RAND_KWRDS uint_fast32_t guf_rand32_u32(guf_rand32_state *state)
return result; return result;
} }
GUF_RAND_KWRDS uint_fast32_t guf_rand64_u32(guf_rand64_state *state) GUF_RAND_KWRDS uint_least32_t guf_rand64_u32(guf_rand64_state *state)
{ {
return (uint_fast32_t)GUF_UWRAP_32( (guf_rand64_u64(state) >> 32u) ); return (uint_least32_t)GUF_UWRAP_32( (guf_rand64_u64(state) >> 32u) );
} }
GUF_RAND_KWRDS uint_fast32_t guf_rand_u32(guf_randstate *state) GUF_RAND_KWRDS uint_least32_t guf_rand_u32(guf_randstate *state)
{ {
GUF_ASSERT(state); GUF_ASSERT(state);
GUF_ASSERT(state->s[0] || state->s[1] || state->s[2] || state->s[3]); GUF_ASSERT(state->s[0] || state->s[1] || state->s[2] || state->s[3]);
@ -313,7 +313,7 @@ GUF_RAND_KWRDS uint_fast32_t guf_rand_u32(guf_randstate *state)
} }
GUF_RAND_KWRDS uint_fast64_t guf_rand64_u64(guf_rand64_state *state) GUF_RAND_KWRDS uint_least64_t guf_rand64_u64(guf_rand64_state *state)
{ {
GUF_ASSERT(state); GUF_ASSERT(state);
GUF_ASSERT(state->s[0] || state->s[1] || state->s[2] || state->s[3]); GUF_ASSERT(state->s[0] || state->s[1] || state->s[2] || state->s[3]);
@ -321,15 +321,15 @@ GUF_RAND_KWRDS uint_fast64_t guf_rand64_u64(guf_rand64_state *state)
xoshiro256** 1.0 (public domain) written in 2018 by David Blackman and Sebastiano Vigna (vigna@acm.org) xoshiro256** 1.0 (public domain) written in 2018 by David Blackman and Sebastiano Vigna (vigna@acm.org)
cf. https://prng.di.unimi.it/xoshiro256starstar.c (last-retrieved 2025-02-11) cf. https://prng.di.unimi.it/xoshiro256starstar.c (last-retrieved 2025-02-11)
*/ */
const uint_fast64_t result = GUF_UWRAP_64( guf_rotl64_uint_fast64_t(state->s[1] * 5u, 7) * 9u ); const uint_least64_t result = GUF_UWRAP_64( guf_rotl64_least_u64(state->s[1] * 5u, 7) * 9u );
const uint_fast64_t t = GUF_UWRAP_64( state->s[1] << 17u ); const uint_least64_t t = GUF_UWRAP_64( state->s[1] << 17u );
state->s[2] ^= state->s[0]; state->s[2] ^= state->s[0];
state->s[3] ^= state->s[1]; state->s[3] ^= state->s[1];
state->s[1] ^= state->s[2]; state->s[1] ^= state->s[2];
state->s[0] ^= state->s[3]; state->s[0] ^= state->s[3];
state->s[2] ^= t; state->s[2] ^= t;
state->s[3] = guf_rotl64_uint_fast64_t(state->s[3], 45); state->s[3] = guf_rotl64_least_u64(state->s[3], 45);
state->s[0] = GUF_UWRAP_64(state->s[0]); state->s[0] = GUF_UWRAP_64(state->s[0]);
state->s[1] = GUF_UWRAP_64(state->s[1]); state->s[1] = GUF_UWRAP_64(state->s[1]);
@ -339,19 +339,19 @@ GUF_RAND_KWRDS uint_fast64_t guf_rand64_u64(guf_rand64_state *state)
return result; return result;
} }
GUF_RAND_KWRDS uint_fast64_t guf_rand32_u64(guf_rand32_state *state) GUF_RAND_KWRDS uint_least64_t guf_rand32_u64(guf_rand32_state *state)
{ {
GUF_ASSERT(state); GUF_ASSERT(state);
GUF_ASSERT(state->s[0] || state->s[1] || state->s[2] || state->s[3]); GUF_ASSERT(state->s[0] || state->s[1] || state->s[2] || state->s[3]);
const uint_fast32_t lower_bits = guf_rand32_u32(state); const uint_least32_t lower_bits = guf_rand32_u32(state);
const uint_fast32_t upper_bits = guf_rand32_u32(state); const uint_least32_t upper_bits = guf_rand32_u32(state);
GUF_ASSERT( lower_bits <= GUF_UINT32_MAX && upper_bits <= GUF_UINT32_MAX ); GUF_ASSERT( lower_bits <= GUF_UINT32_MAX && upper_bits <= GUF_UINT32_MAX );
GUF_ASSERT( ( ((uint_fast64_t)upper_bits << 32u) | (uint_fast64_t)lower_bits ) <= GUF_UINT32_MAX); GUF_ASSERT( ( ((uint_least64_t)upper_bits << 32u) | (uint_least64_t)lower_bits ) <= GUF_UINT32_MAX);
return ((uint_fast64_t)upper_bits << 32u) | (uint_fast64_t)lower_bits; // TODO: not sure if that's a good idea... return ((uint_least64_t)upper_bits << 32u) | (uint_least64_t)lower_bits; // TODO: not sure if that's a good idea...
} }
GUF_RAND_KWRDS uint_fast64_t guf_rand_u64(guf_randstate *state) GUF_RAND_KWRDS uint_least64_t guf_rand_u64(guf_randstate *state)
{ {
#ifdef GUF_RAND_32_BIT #ifdef GUF_RAND_32_BIT
return guf_rand32_u64(state); return guf_rand32_u64(state);
@ -367,11 +367,11 @@ GUF_RAND_KWRDS uint_fast64_t guf_rand_u64(guf_randstate *state)
GUF_RAND_KWRDS void guf_rand32_state_jump(guf_rand32_state *state) GUF_RAND_KWRDS void guf_rand32_state_jump(guf_rand32_state *state)
{ {
GUF_ASSERT(state); GUF_ASSERT(state);
static const uint_fast32_t JUMP[] = { 0x8764000b, 0xf542d2d3, 0x6fa035c3, 0x77f2db5b }; static const uint_least32_t JUMP[] = { 0x8764000b, 0xf542d2d3, 0x6fa035c3, 0x77f2db5b };
uint_fast32_t s0 = 0; uint_least32_t s0 = 0;
uint_fast32_t s1 = 0; uint_least32_t s1 = 0;
uint_fast32_t s2 = 0; uint_least32_t s2 = 0;
uint_fast32_t s3 = 0; uint_least32_t s3 = 0;
for (size_t i = 0; i < sizeof JUMP / sizeof *JUMP; ++i) { for (size_t i = 0; i < sizeof JUMP / sizeof *JUMP; ++i) {
for (int b = 0; b < 32; ++b) { for (int b = 0; b < 32; ++b) {
if (1u * JUMP[i] & UINT32_C(1) << b) { if (1u * JUMP[i] & UINT32_C(1) << b) {
@ -399,11 +399,11 @@ GUF_RAND_KWRDS void guf_rand32_state_jump(guf_rand32_state *state)
*/ */
GUF_RAND_KWRDS void guf_rand64_state_jump(guf_rand64_state *state) GUF_RAND_KWRDS void guf_rand64_state_jump(guf_rand64_state *state)
{ {
static const uint_fast64_t JUMP[] = { 0x180ec6d33cfd0aba, 0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c }; static const uint_least64_t JUMP[] = { 0x180ec6d33cfd0aba, 0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };
uint_fast64_t s0 = 0; uint_least64_t s0 = 0;
uint_fast64_t s1 = 0; uint_least64_t s1 = 0;
uint_fast64_t s2 = 0; uint_least64_t s2 = 0;
uint_fast64_t s3 = 0; uint_least64_t s3 = 0;
for (size_t i = 0; i < sizeof JUMP / sizeof *JUMP; ++i) { for (size_t i = 0; i < sizeof JUMP / sizeof *JUMP; ++i) {
for (int b = 0; b < 64; ++b) { for (int b = 0; b < 64; ++b) {
if (1u * JUMP[i] & UINT64_C(1) << b) { if (1u * JUMP[i] & UINT64_C(1) << b) {
@ -627,7 +627,7 @@ GUF_RAND_KWRDS float guf_randrange_f32(guf_randstate *state, float min, float en
// returns uniformly-distributed random i32 in range [min, max] (max is inclusive as opposed to the f32/f64 versions) // returns uniformly-distributed random i32 in range [min, max] (max is inclusive as opposed to the f32/f64 versions)
GUF_RAND_KWRDS int_fast32_t guf_rand64_range_i32(guf_rand64_state *state, int_fast32_t min, int_fast32_t max) GUF_RAND_KWRDS int_least32_t guf_rand64_range_i32(guf_rand64_state *state, int_least32_t min, int_least32_t max)
{ {
GUF_ASSERT_RELEASE(max >= min); GUF_ASSERT_RELEASE(max >= min);
if (min == max) { if (min == max) {
@ -637,21 +637,21 @@ GUF_RAND_KWRDS int_fast32_t guf_rand64_range_i32(guf_rand64_state *state, int_fa
// cf. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random (last-retrieved 2025-02-12) // cf. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random (last-retrieved 2025-02-12)
const double result = floor(guf_rand64_f64(state) * (delta + 1.0) + min); const double result = floor(guf_rand64_f64(state) * (delta + 1.0) + min);
GUF_ASSERT(result >= min && result <= max); GUF_ASSERT(result >= min && result <= max);
GUF_ASSERT((int_fast32_t)result <= GUF_INT32_MAX && (int_fast32_t)result >= GUF_INT32_MIN); GUF_ASSERT((int_least32_t)result <= GUF_INT32_MAX && (int_least32_t)result >= GUF_INT32_MIN);
return (int_fast32_t)result; return (int_least32_t)result;
} }
// returns uniformly-distributed random i32 in range [min, max] (max is inclusive as opposed to the f32/f64 versions) // returns uniformly-distributed random i32 in range [min, max] (max is inclusive as opposed to the f32/f64 versions)
GUF_RAND_KWRDS int_fast32_t guf_rand32_range_i32(guf_rand32_state *state, int_fast32_t min, int_fast32_t max) GUF_RAND_KWRDS int_least32_t guf_rand32_range_i32(guf_rand32_state *state, int_least32_t min, int_least32_t max)
{ {
GUF_ASSERT_RELEASE(max >= min); GUF_ASSERT_RELEASE(max >= min);
if (min == max) { if (min == max) {
return min; return min;
} }
const uint_fast32_t rand_max_i32 = GUF_UWRAP_32(GUF_UINT32_MAX >> 1u); // 2^31 - 1 (== INT32_MAX) const uint_least32_t rand_max_i32 = GUF_UWRAP_32(GUF_UINT32_MAX >> 1u); // 2^31 - 1 (== INT32_MAX)
const uint_fast32_t delta = guf_absdiff_int_fast32_t(max, min); const uint_least32_t delta = guf_absdiff_least_i32(max, min);
if (delta > rand_max_i32) { if (delta > rand_max_i32) {
guf_panic(GUF_ERR_INT_OVERFLOW, GUF_ERR_MSG("in function guf_rand32_range_i32: interval [min, max] larger than 2^31 - 1")); guf_panic(GUF_ERR_INT_OVERFLOW, GUF_ERR_MSG("in function guf_rand32_range_i32: interval [min, max] larger than 2^31 - 1"));
return -1; return -1;
@ -663,26 +663,26 @@ GUF_RAND_KWRDS int_fast32_t guf_rand32_range_i32(guf_rand32_state *state, int_fa
cf. https://c-faq.com/lib/randrange.html (last-retrieved 2025-02-11) cf. https://c-faq.com/lib/randrange.html (last-retrieved 2025-02-11)
https://stackoverflow.com/a/6852396 (last-retrieved 2025-02-11) https://stackoverflow.com/a/6852396 (last-retrieved 2025-02-11)
*/ */
const uint_fast32_t num_rand_vals = GUF_UWRAP_32(rand_max_i32 + 1u); // 2^31 const uint_least32_t num_rand_vals = GUF_UWRAP_32(rand_max_i32 + 1u); // 2^31
const uint_fast32_t num_bins = GUF_UWRAP_32(delta + 1u); const uint_least32_t num_bins = GUF_UWRAP_32(delta + 1u);
const uint_fast32_t bin_size = GUF_UWRAP_32(num_rand_vals / num_bins); // bin_size = floor(num_rand_vals / num_bins) const uint_least32_t bin_size = GUF_UWRAP_32(num_rand_vals / num_bins); // bin_size = floor(num_rand_vals / num_bins)
const uint_fast32_t limit = GUF_UWRAP_32(num_rand_vals - (num_rand_vals % num_bins)); // limit == bin_size * num_bins const uint_least32_t limit = GUF_UWRAP_32(num_rand_vals - (num_rand_vals % num_bins)); // limit == bin_size * num_bins
GUF_ASSERT(limit == 1u * GUF_UWRAP_32(bin_size * num_bins)); GUF_ASSERT(limit == 1u * GUF_UWRAP_32(bin_size * num_bins));
/* /*
since (num_rand_vals % num_bins) is at most 2^30 + 1 (I think...), the minimum limit is 2^31 - (2^30 + 1), since (num_rand_vals % num_bins) is at most 2^30 + 1 (I think...), the minimum limit is 2^31 - (2^30 + 1),
which means in the worst case, the chance of having to iterate (i.e. step >= limit) which means in the worst case, the chance of having to iterate (i.e. step >= limit)
is 1 - (2^31 - (2^30 + 1)) / 2^31 == 0.5 is 1 - (2^31 - (2^30 + 1)) / 2^31 == 0.5
*/ */
uint_fast32_t step; uint_least32_t step;
do { do {
step = GUF_UWRAP_32(guf_rand32_u32(state) >> 1u); // [0, 2^31 - 1] step = GUF_UWRAP_32(guf_rand32_u32(state) >> 1u); // [0, 2^31 - 1]
} while (step >= limit); } while (step >= limit);
step = GUF_UWRAP_32(step / bin_size); step = GUF_UWRAP_32(step / bin_size);
GUF_ASSERT(guf_ckd_add_int_fast32_t(min, step) == GUF_MATH_CKD_SUCCESS); GUF_ASSERT(guf_ckd_add_least_i32(min, step) == GUF_MATH_CKD_SUCCESS);
const int_fast32_t rnd = min + (int_fast32_t)step; const int_least32_t rnd = min + (int_least32_t)step;
GUF_ASSERT(rnd >= min && rnd <= max); GUF_ASSERT(rnd >= min && rnd <= max);
GUF_ASSERT(rnd <= GUF_INT32_MAX && rnd >= GUF_INT32_MIN); GUF_ASSERT(rnd <= GUF_INT32_MAX && rnd >= GUF_INT32_MIN);
@ -690,7 +690,7 @@ GUF_RAND_KWRDS int_fast32_t guf_rand32_range_i32(guf_rand32_state *state, int_fa
} }
// returns uniformly-distributed random i32 in range [min, max] (max is inclusive as opposed to the f32/f64 versions) // returns uniformly-distributed random i32 in range [min, max] (max is inclusive as opposed to the f32/f64 versions)
GUF_RAND_KWRDS int_fast32_t guf_randrange_i32(guf_randstate *state, int_fast32_t min, int_fast32_t max) GUF_RAND_KWRDS int_least32_t guf_randrange_i32(guf_randstate *state, int_least32_t min, int_least32_t max)
{ {
#ifdef GUF_RAND_32_BIT #ifdef GUF_RAND_32_BIT
return guf_rand32_range_i32(state, min, max); return guf_rand32_range_i32(state, min, max);
@ -699,7 +699,7 @@ GUF_RAND_KWRDS int_fast32_t guf_randrange_i32(guf_randstate *state, int_fast32_t
#endif #endif
} }
GUF_RAND_KWRDS uint_fast32_t guf_rand32_range_u32(guf_rand32_state *state, uint_fast32_t min, uint_fast32_t max) GUF_RAND_KWRDS uint_least32_t guf_rand32_range_u32(guf_rand32_state *state, uint_least32_t min, uint_least32_t max)
{ {
/* /*
The method used in guf_rand32_range_i32 above (which uses only 32-bit integer arithmetic) could overflow here, The method used in guf_rand32_range_i32 above (which uses only 32-bit integer arithmetic) could overflow here,
@ -716,11 +716,11 @@ GUF_RAND_KWRDS uint_fast32_t guf_rand32_range_u32(guf_rand32_state *state, uint_
const double delta = (double)max - (double)min; const double delta = (double)max - (double)min;
const double result = floor(guf_rand32_f64(state) * (delta + 1.0) + min); // NOTE: guf_rand32_f64 is slow for 32-bit platforms... const double result = floor(guf_rand32_f64(state) * (delta + 1.0) + min); // NOTE: guf_rand32_f64 is slow for 32-bit platforms...
GUF_ASSERT(result >= min && result <= max); GUF_ASSERT(result >= min && result <= max);
GUF_ASSERT((uint_fast32_t)result <= GUF_UINT32_MAX); GUF_ASSERT((uint_least32_t)result <= GUF_UINT32_MAX);
return (uint_fast32_t)result; return (uint_least32_t)result;
} }
GUF_RAND_KWRDS uint_fast32_t guf_rand64_range_u32(guf_rand64_state *state, uint_fast32_t min, uint_fast32_t max) GUF_RAND_KWRDS uint_least32_t guf_rand64_range_u32(guf_rand64_state *state, uint_least32_t min, uint_least32_t max)
{ {
min = GUF_UWRAP_32(min); min = GUF_UWRAP_32(min);
max = GUF_UWRAP_32(max); max = GUF_UWRAP_32(max);
@ -733,11 +733,11 @@ GUF_RAND_KWRDS uint_fast32_t guf_rand64_range_u32(guf_rand64_state *state, uint_
const double delta = (double)max - (double)min; const double delta = (double)max - (double)min;
const double result = floor(guf_rand64_f64(state) * (delta + 1.0) + min); const double result = floor(guf_rand64_f64(state) * (delta + 1.0) + min);
GUF_ASSERT(result >= min && result <= max); GUF_ASSERT(result >= min && result <= max);
GUF_ASSERT((uint_fast32_t)result <= GUF_UINT32_MAX); GUF_ASSERT((uint_least32_t)result <= GUF_UINT32_MAX);
return (uint_fast32_t)result; return (uint_least32_t)result;
} }
GUF_RAND_KWRDS uint_fast32_t guf_randrange_u32(guf_randstate *state, uint_fast32_t min, uint_fast32_t max) GUF_RAND_KWRDS uint_least32_t guf_randrange_u32(guf_randstate *state, uint_least32_t min, uint_least32_t max)
{ {
#ifdef GUF_RAND_32_BIT #ifdef GUF_RAND_32_BIT
return guf_rand32_range_u32(state, min, max); return guf_rand32_range_u32(state, min, max);
@ -746,16 +746,16 @@ GUF_RAND_KWRDS uint_fast32_t guf_randrange_u32(guf_randstate *state, uint_fast32
#endif #endif
} }
GUF_RAND_KWRDS int_fast64_t guf_rand64_range_i64(guf_rand64_state *state, int_fast64_t min, int_fast64_t max) GUF_RAND_KWRDS int_least64_t guf_rand64_range_i64(guf_rand64_state *state, int_least64_t min, int_least64_t max)
{ {
GUF_ASSERT_RELEASE(max >= min); GUF_ASSERT_RELEASE(max >= min);
if (min == max) { if (min == max) {
return min; return min;
} }
const uint_fast64_t rand_max_i64 = GUF_UWRAP_64(GUF_UINT64_MAX >> 1u); // 2^63 - 1 (== INT64_MAX) const uint_least64_t rand_max_i64 = GUF_UWRAP_64(GUF_UINT64_MAX >> 1u); // 2^63 - 1 (== INT64_MAX)
const uint_fast64_t delta = guf_absdiff_int_fast64_t(max, min); const uint_least64_t delta = guf_absdiff_least_i64(max, min);
if (delta > rand_max_i64) { if (delta > rand_max_i64) {
guf_panic(GUF_ERR_INT_OVERFLOW, GUF_ERR_MSG("in function guf_randrange_i64: interval [min, max] larger than 2^63 - 1")); guf_panic(GUF_ERR_INT_OVERFLOW, GUF_ERR_MSG("in function guf_randrange_i64: interval [min, max] larger than 2^63 - 1"));
return -1; return -1;
@ -766,40 +766,40 @@ GUF_RAND_KWRDS int_fast64_t guf_rand64_range_i64(guf_rand64_state *state, int_fa
cf. https://c-faq.com/lib/randrange.html (last-retrieved 2025-02-11) cf. https://c-faq.com/lib/randrange.html (last-retrieved 2025-02-11)
https://stackoverflow.com/a/6852396 (last-retrieved 2025-02-11) https://stackoverflow.com/a/6852396 (last-retrieved 2025-02-11)
*/ */
const uint_fast64_t num_rand_vals = GUF_UWRAP_64(rand_max_i64 + 1u); // 2^63 const uint_least64_t num_rand_vals = GUF_UWRAP_64(rand_max_i64 + 1u); // 2^63
const uint_fast64_t num_bins = GUF_UWRAP_64(delta + 1u); const uint_least64_t num_bins = GUF_UWRAP_64(delta + 1u);
const uint_fast64_t bin_size = GUF_UWRAP_64(num_rand_vals / num_bins); // bin_size = floor(num_rand_vals / num_bins) const uint_least64_t bin_size = GUF_UWRAP_64(num_rand_vals / num_bins); // bin_size = floor(num_rand_vals / num_bins)
const uint_fast64_t limit = GUF_UWRAP_64(num_rand_vals - (num_rand_vals % num_bins)); // limit == bin_size * num_bins const uint_least64_t limit = GUF_UWRAP_64(num_rand_vals - (num_rand_vals % num_bins)); // limit == bin_size * num_bins
GUF_ASSERT(limit == 1u * GUF_UWRAP_64(bin_size * num_bins)); GUF_ASSERT(limit == 1u * GUF_UWRAP_64(bin_size * num_bins));
/* /*
since (num_rand_vals % num_bins) is at most 2^62 + 1 (I think...), the minimum limit is 2^63 - (2^62 + 1), since (num_rand_vals % num_bins) is at most 2^62 + 1 (I think...), the minimum limit is 2^63 - (2^62 + 1),
which means in the worst case, the chance of having to iterate (i.e. step >= limit) which means in the worst case, the chance of having to iterate (i.e. step >= limit)
is 1 - (2^63 - (2^62 + 1)) / 2^63 == 0.5 is 1 - (2^63 - (2^62 + 1)) / 2^63 == 0.5
*/ */
uint_fast64_t step; uint_least64_t step;
do { do {
step = GUF_UWRAP_64(guf_rand64_u64(state) >> 1); // [0, 2^63 - 1] step = GUF_UWRAP_64(guf_rand64_u64(state) >> 1); // [0, 2^63 - 1]
} while (step >= limit); } while (step >= limit);
step = GUF_UWRAP_64(step / bin_size); step = GUF_UWRAP_64(step / bin_size);
GUF_ASSERT(guf_ckd_add_int_fast64_t(min, step) == GUF_MATH_CKD_SUCCESS); GUF_ASSERT(guf_ckd_add_least_i64(min, step) == GUF_MATH_CKD_SUCCESS);
const int_fast64_t rnd = min + (int_fast64_t)step; const int_least64_t rnd = min + (int_least64_t)step;
GUF_ASSERT(rnd >= min && rnd <= max); GUF_ASSERT(rnd >= min && rnd <= max);
return rnd; return rnd;
} }
GUF_RAND_KWRDS int_fast64_t guf_rand32_range_i64(guf_rand32_state *state, int_fast64_t min, int_fast64_t max) GUF_RAND_KWRDS int_least64_t guf_rand32_range_i64(guf_rand32_state *state, int_least64_t min, int_least64_t max)
{ {
GUF_ASSERT_RELEASE(max >= min); GUF_ASSERT_RELEASE(max >= min);
if (min == max) { if (min == max) {
return min; return min;
} }
const uint_fast64_t rand_max_i64 = GUF_UWRAP_64(GUF_UINT64_MAX >> 1u); // 2^63 - 1 (== INT64_MAX) const uint_least64_t rand_max_i64 = GUF_UWRAP_64(GUF_UINT64_MAX >> 1u); // 2^63 - 1 (== INT64_MAX)
const uint_fast64_t delta = guf_absdiff_int_fast64_t(max, min); const uint_least64_t delta = guf_absdiff_least_i64(max, min);
if (delta > rand_max_i64) { if (delta > rand_max_i64) {
guf_panic(GUF_ERR_INT_OVERFLOW, GUF_ERR_MSG("in function guf_randrange_i64: interval [min, max] larger than 2^63 - 1")); guf_panic(GUF_ERR_INT_OVERFLOW, GUF_ERR_MSG("in function guf_randrange_i64: interval [min, max] larger than 2^63 - 1"));
return -1; return -1;
@ -810,32 +810,32 @@ GUF_RAND_KWRDS int_fast64_t guf_rand32_range_i64(guf_rand32_state *state, int_fa
cf. https://c-faq.com/lib/randrange.html (last-retrieved 2025-02-11) cf. https://c-faq.com/lib/randrange.html (last-retrieved 2025-02-11)
https://stackoverflow.com/a/6852396 (last-retrieved 2025-02-11) https://stackoverflow.com/a/6852396 (last-retrieved 2025-02-11)
*/ */
const uint_fast64_t num_rand_vals = GUF_UWRAP_64(rand_max_i64 + 1u); // 2^63 const uint_least64_t num_rand_vals = GUF_UWRAP_64(rand_max_i64 + 1u); // 2^63
const uint_fast64_t num_bins = GUF_UWRAP_64(delta + 1u); const uint_least64_t num_bins = GUF_UWRAP_64(delta + 1u);
const uint_fast64_t bin_size = GUF_UWRAP_64(num_rand_vals / num_bins); // bin_size = floor(num_rand_vals / num_bins) const uint_least64_t bin_size = GUF_UWRAP_64(num_rand_vals / num_bins); // bin_size = floor(num_rand_vals / num_bins)
const uint_fast64_t limit = GUF_UWRAP_64(num_rand_vals - (num_rand_vals % num_bins)); // limit == bin_size * num_bins const uint_least64_t limit = GUF_UWRAP_64(num_rand_vals - (num_rand_vals % num_bins)); // limit == bin_size * num_bins
GUF_ASSERT(limit == 1u * GUF_UWRAP_64(bin_size * num_bins)); GUF_ASSERT(limit == 1u * GUF_UWRAP_64(bin_size * num_bins));
/* /*
since (num_rand_vals % num_bins) is at most 2^62 + 1 (I think...), the minimum limit is 2^63 - (2^62 + 1), since (num_rand_vals % num_bins) is at most 2^62 + 1 (I think...), the minimum limit is 2^63 - (2^62 + 1),
which means in the worst case, the chance of having to iterate (i.e. step >= limit) which means in the worst case, the chance of having to iterate (i.e. step >= limit)
is 1 - (2^63 - (2^62 + 1)) / 2^63 == 0.5 is 1 - (2^63 - (2^62 + 1)) / 2^63 == 0.5
*/ */
uint_fast64_t step; uint_least64_t step;
do { do {
step = GUF_UWRAP_64(guf_rand32_u64(state) >> 1); // [0, 2^63 - 1] step = GUF_UWRAP_64(guf_rand32_u64(state) >> 1); // [0, 2^63 - 1]
} while (step >= limit); } while (step >= limit);
step = GUF_UWRAP_64(step / bin_size); step = GUF_UWRAP_64(step / bin_size);
GUF_ASSERT(guf_ckd_add_int_fast64_t(min, step) == GUF_MATH_CKD_SUCCESS); GUF_ASSERT(guf_ckd_add_least_i64(min, step) == GUF_MATH_CKD_SUCCESS);
const int_fast64_t rnd = min + (int_fast64_t)step; const int_least64_t rnd = min + (int_least64_t)step;
GUF_ASSERT(rnd >= min && rnd <= max); GUF_ASSERT(rnd >= min && rnd <= max);
return rnd; return rnd;
} }
// returns uniformly-distributed random int64_t in range [min, max] (max is inclusive as opposed to the f32/f64 versions) // returns uniformly-distributed random int64_t in range [min, max] (max is inclusive as opposed to the f32/f64 versions)
GUF_RAND_KWRDS int_fast64_t guf_randrange_i64(guf_randstate *state, int_fast64_t min, int_fast64_t max) GUF_RAND_KWRDS int_least64_t guf_randrange_i64(guf_randstate *state, int_least64_t min, int_least64_t max)
{ {
#ifdef GUF_RAND_32_BIT #ifdef GUF_RAND_32_BIT
return guf_rand32_range_i64(state, min, max); return guf_rand32_range_i64(state, min, max);

View File

@ -35,9 +35,9 @@ GUF_UTF8_KWRDS int guf_utf8_char_num_bytes(const guf_utf8_char *c);
GUF_UTF8_KWRDS bool guf_utf8_char_is_valid(const guf_utf8_char *c); GUF_UTF8_KWRDS bool guf_utf8_char_is_valid(const guf_utf8_char *c);
GUF_UTF8_KWRDS bool guf_utf8_char_is_whitespace(const guf_utf8_char *c); GUF_UTF8_KWRDS bool guf_utf8_char_is_whitespace(const guf_utf8_char *c);
GUF_UTF8_KWRDS guf_utf8_char guf_utf8_char_new(uint_fast32_t codepoint); // Returns GUF_UTF8_REPLACEMENT_CHAR for invalid codepoints (and for GUF_UTF8_REPLACEMENT_CHAR_CODEPOINT). GUF_UTF8_KWRDS guf_utf8_char guf_utf8_char_new(uint_least32_t codepoint); // Returns GUF_UTF8_REPLACEMENT_CHAR for invalid codepoints (and for GUF_UTF8_REPLACEMENT_CHAR_CODEPOINT).
GUF_UTF8_KWRDS bool guf_utf8_encode(guf_utf8_char *result, uint_fast32_t codepoint); // Returns false for invalid codepoints. GUF_UTF8_KWRDS bool guf_utf8_encode(guf_utf8_char *result, uint_least32_t codepoint); // Returns false for invalid codepoints.
GUF_UTF8_KWRDS int_fast32_t guf_utf8_decode(const guf_utf8_char *utf8); // Returns -1 for invalid utf-8. GUF_UTF8_KWRDS int_least32_t guf_utf8_decode(const guf_utf8_char *utf8); // Returns -1 for invalid utf-8.
GUF_UTF8_KWRDS bool guf_utf8_equal(const guf_utf8_char *a, const guf_utf8_char *b); GUF_UTF8_KWRDS bool guf_utf8_equal(const guf_utf8_char *a, const guf_utf8_char *b);
@ -93,7 +93,7 @@ GUF_UTF8_KWRDS bool guf_utf8_equal(const guf_utf8_char *a, const guf_utf8_char *
} }
// cf. https://datatracker.ietf.org/doc/html/rfc3629#section-3 (last-retrieved 2025-03-02) // cf. https://datatracker.ietf.org/doc/html/rfc3629#section-3 (last-retrieved 2025-03-02)
GUF_UTF8_KWRDS bool guf_utf8_encode(guf_utf8_char *result, uint_fast32_t cp) GUF_UTF8_KWRDS bool guf_utf8_encode(guf_utf8_char *result, uint_least32_t cp)
{ {
GUF_ASSERT(result); GUF_ASSERT(result);
@ -138,7 +138,7 @@ GUF_UTF8_KWRDS bool guf_utf8_encode(guf_utf8_char *result, uint_fast32_t cp)
int cp_bits = 0; int cp_bits = 0;
for (int byte_n = num_bytes - 1; byte_n >= 0 && cp > 0; --byte_n) { for (int byte_n = num_bytes - 1; byte_n >= 0 && cp > 0; --byte_n) {
const int bits = (byte_n == 0) ? first_byte_bits : tail_byte_bits; const int bits = (byte_n == 0) ? first_byte_bits : tail_byte_bits;
const uint_fast32_t cp_mask = GUF_UWRAP_32( (UINT32_C(1) << bits) - 1 ); const uint_least32_t cp_mask = GUF_UWRAP_32( (UINT32_C(1) << bits) - 1 );
result->bytes[byte_n] = (char)(1u * (unsigned char)result->bytes[byte_n] | (cp & cp_mask)); result->bytes[byte_n] = (char)(1u * (unsigned char)result->bytes[byte_n] | (cp & cp_mask));
cp = cp >> bits; cp = cp >> bits;
cp_bits += bits; cp_bits += bits;
@ -155,7 +155,7 @@ GUF_UTF8_KWRDS bool guf_utf8_encode(guf_utf8_char *result, uint_fast32_t cp)
} }
} }
GUF_UTF8_KWRDS guf_utf8_char guf_utf8_char_new(uint_fast32_t codepoint) GUF_UTF8_KWRDS guf_utf8_char guf_utf8_char_new(uint_least32_t codepoint)
{ {
guf_utf8_char result = GUF_UTF8_REPLACEMENT_CHAR; guf_utf8_char result = GUF_UTF8_REPLACEMENT_CHAR;
guf_utf8_encode(&result, codepoint); guf_utf8_encode(&result, codepoint);
@ -163,7 +163,7 @@ GUF_UTF8_KWRDS guf_utf8_char guf_utf8_char_new(uint_fast32_t codepoint)
} }
// cf. https://datatracker.ietf.org/doc/html/rfc3629#section-3 (last-retrieved 2025-03-02) // cf. https://datatracker.ietf.org/doc/html/rfc3629#section-3 (last-retrieved 2025-03-02)
GUF_UTF8_KWRDS int_fast32_t guf_utf8_decode(const guf_utf8_char *c) GUF_UTF8_KWRDS int_least32_t guf_utf8_decode(const guf_utf8_char *c)
{ {
if (!guf_utf8_char_is_valid(c)) { if (!guf_utf8_char_is_valid(c)) {
return -1; return -1;
@ -189,12 +189,12 @@ GUF_UTF8_KWRDS int_fast32_t guf_utf8_decode(const guf_utf8_char *c)
return -1; return -1;
} }
uint_fast32_t cp = 0; uint_least32_t cp = 0;
int cp_bits = 0; int cp_bits = 0;
for (int byte_n = num_bytes - 1; byte_n >= 0; --byte_n) { for (int byte_n = num_bytes - 1; byte_n >= 0; --byte_n) {
const int bits = (byte_n == 0) ? first_byte_bits : tail_byte_bits; const int bits = (byte_n == 0) ? first_byte_bits : tail_byte_bits;
const uint_fast32_t byte_mask = GUF_UWRAP_32( (UINT32_C(1) << bits) - 1 ); const uint_least32_t byte_mask = GUF_UWRAP_32( (UINT32_C(1) << bits) - 1 );
cp = GUF_UWRAP_32( cp | GUF_UWRAP_32( 1u * ((uint_fast32_t)c->bytes[byte_n] & byte_mask) << cp_bits ) ); cp = GUF_UWRAP_32( cp | GUF_UWRAP_32( 1u * ((uint_least32_t)c->bytes[byte_n] & byte_mask) << cp_bits ) );
cp_bits += bits; cp_bits += bits;
} }
GUF_ASSERT(cp_bits == first_byte_bits + (num_bytes - 1) * tail_byte_bits); GUF_ASSERT(cp_bits == first_byte_bits + (num_bytes - 1) * tail_byte_bits);
@ -207,8 +207,8 @@ GUF_UTF8_KWRDS int_fast32_t guf_utf8_decode(const guf_utf8_char *c)
#ifdef INT32_MAX #ifdef INT32_MAX
GUF_ASSERT(cp <= INT32_MAX); GUF_ASSERT(cp <= INT32_MAX);
#endif #endif
GUF_ASSERT(cp <= INT_FAST32_MAX); GUF_ASSERT(cp <= INT_LEAST32_MAX);
return (int_fast32_t)cp; return (int_least32_t)cp;
} }
} }

View File

@ -27,7 +27,7 @@ void CkdIntTest::test_ckd()
const int32_t add_res = a + b; const int32_t add_res = a + b;
const guf_math_ckd_result ckd_add = guf_ckd_add_i8((int8_t)a, (int8_t)b); const guf_math_ckd_result ckd_add = guf_ckd_add_i8((int8_t)a, (int8_t)b);
TEST_CHECK(ckd_add == guf_ckd_add_i8((int8_t)b, (int8_t)a)); TEST_CHECK(ckd_add == guf_ckd_add_i8((int8_t)b, (int8_t)a));
TEST_CHECK(ckd_add == guf_ckd_add_int_fast8_t((int_fast8_t)a, (int_fast8_t)b)); TEST_CHECK(ckd_add == guf_ckd_add_least_i8((int_least8_t)a, (int_least8_t)b));
if (add_res > INT8_MAX) { if (add_res > INT8_MAX) {
TEST_CHECK(ckd_add == GUF_MATH_CKD_OVERFLOW_POS); TEST_CHECK(ckd_add == GUF_MATH_CKD_OVERFLOW_POS);
int8_t saturated, saturated2; int8_t saturated, saturated2;
@ -73,7 +73,7 @@ void CkdIntTest::test_ckd()
const int32_t sub_res = a - b; const int32_t sub_res = a - b;
const guf_math_ckd_result ckd_sub = guf_ckd_sub_i8((int8_t)a, (int8_t)b); const guf_math_ckd_result ckd_sub = guf_ckd_sub_i8((int8_t)a, (int8_t)b);
TEST_CHECK(ckd_sub == guf_ckd_sub_int_fast8_t((int_fast8_t)a, (int_fast8_t)b)); TEST_CHECK(ckd_sub == guf_ckd_sub_least_i8((int_least8_t)a, (int_least8_t)b));
if (sub_res > INT8_MAX) { if (sub_res > INT8_MAX) {
TEST_CHECK(ckd_sub == GUF_MATH_CKD_OVERFLOW_POS); TEST_CHECK(ckd_sub == GUF_MATH_CKD_OVERFLOW_POS);
int8_t saturated; int8_t saturated;
@ -102,7 +102,7 @@ void CkdIntTest::test_ckd()
const int32_t mul_res = a * b; const int32_t mul_res = a * b;
const guf_math_ckd_result ckd_mul = guf_ckd_mul_i8((int8_t)a, (int8_t)b); const guf_math_ckd_result ckd_mul = guf_ckd_mul_i8((int8_t)a, (int8_t)b);
TEST_CHECK(ckd_mul == guf_ckd_mul_int_fast8_t((int_fast8_t)a, (int_fast8_t)b)); TEST_CHECK(ckd_mul == guf_ckd_mul_least_i8((int_least8_t)a, (int_least8_t)b));
TEST_CHECK(ckd_mul == guf_ckd_mul_i8((int8_t)b, (int8_t)a)); TEST_CHECK(ckd_mul == guf_ckd_mul_i8((int8_t)b, (int8_t)a));
if (mul_res > INT8_MAX) { if (mul_res > INT8_MAX) {
TEST_CHECK(ckd_mul == GUF_MATH_CKD_OVERFLOW_POS); TEST_CHECK(ckd_mul == GUF_MATH_CKD_OVERFLOW_POS);
@ -224,53 +224,53 @@ void CkdIntTest::test_ckd()
TEST_CHECK(mul_i32_res == 1693839360); TEST_CHECK(mul_i32_res == 1693839360);
int_fast32_t mul_i32fast_res = -12345; int_least32_t mul_i32least_res = -12345;
TEST_CHECK(guf_wrapping_mul_int_fast32_t(INT32_MAX, 2, &mul_i32fast_res) == GUF_MATH_CKD_OVERFLOW_POS); TEST_CHECK(guf_wrapping_mul_least_i32(INT32_MAX, 2, &mul_i32least_res) == GUF_MATH_CKD_OVERFLOW_POS);
TEST_CHECK(mul_i32fast_res == -2); TEST_CHECK(mul_i32least_res == -2);
mul_i32fast_res = -12345; mul_i32least_res = -12345;
TEST_CHECK(guf_wrapping_mul_int_fast32_t(2, INT32_MAX, &mul_i32fast_res) == GUF_MATH_CKD_OVERFLOW_POS); TEST_CHECK(guf_wrapping_mul_least_i32(2, INT32_MAX, &mul_i32least_res) == GUF_MATH_CKD_OVERFLOW_POS);
TEST_CHECK(mul_i32fast_res == -2); TEST_CHECK(mul_i32least_res == -2);
mul_i32fast_res = -12345; mul_i32least_res = -12345;
TEST_CHECK(guf_wrapping_mul_int_fast32_t(INT32_MAX, -2, &mul_i32fast_res) == GUF_MATH_CKD_OVERFLOW_NEG); TEST_CHECK(guf_wrapping_mul_least_i32(INT32_MAX, -2, &mul_i32least_res) == GUF_MATH_CKD_OVERFLOW_NEG);
TEST_CHECK(mul_i32fast_res == 2); TEST_CHECK(mul_i32least_res == 2);
mul_i32fast_res = -12345; mul_i32least_res = -12345;
TEST_CHECK(guf_wrapping_mul_int_fast32_t(-2, INT32_MAX, &mul_i32fast_res) == GUF_MATH_CKD_OVERFLOW_NEG); TEST_CHECK(guf_wrapping_mul_least_i32(-2, INT32_MAX, &mul_i32least_res) == GUF_MATH_CKD_OVERFLOW_NEG);
TEST_CHECK(mul_i32fast_res == 2); TEST_CHECK(mul_i32least_res == 2);
TEST_CHECK(guf_wrapping_mul_int_fast32_t(42002718, 314159265, &mul_i32fast_res) == GUF_MATH_CKD_OVERFLOW_POS); TEST_CHECK(guf_wrapping_mul_least_i32(42002718, 314159265, &mul_i32least_res) == GUF_MATH_CKD_OVERFLOW_POS);
TEST_CHECK(mul_i32fast_res == -972735522); TEST_CHECK(mul_i32least_res == -972735522);
mul_i32fast_res = -12345; mul_i32least_res = -12345;
TEST_CHECK(guf_wrapping_mul_int_fast32_t(314159265, 42002718, &mul_i32fast_res) == GUF_MATH_CKD_OVERFLOW_POS); TEST_CHECK(guf_wrapping_mul_least_i32(314159265, 42002718, &mul_i32least_res) == GUF_MATH_CKD_OVERFLOW_POS);
TEST_CHECK(mul_i32fast_res == -972735522); TEST_CHECK(mul_i32least_res == -972735522);
mul_i32fast_res = 12345; mul_i32least_res = 12345;
guf_wrapping_mul_int_fast32_t(42002718, 314159265, &mul_i32fast_res); guf_wrapping_mul_least_i32(42002718, 314159265, &mul_i32least_res);
TEST_CHECK(mul_i32fast_res == -972735522); TEST_CHECK(mul_i32least_res == -972735522);
mul_i32fast_res = 12345; mul_i32least_res = 12345;
guf_wrapping_mul_int_fast32_t(-42002718, 314159265, &mul_i32fast_res); guf_wrapping_mul_least_i32(-42002718, 314159265, &mul_i32least_res);
TEST_CHECK(mul_i32fast_res == 972735522); TEST_CHECK(mul_i32least_res == 972735522);
mul_i32fast_res = 12345; mul_i32least_res = 12345;
guf_wrapping_mul_int_fast32_t(-88888888, 99999999, &mul_i32fast_res); guf_wrapping_mul_least_i32(-88888888, 99999999, &mul_i32least_res);
TEST_CHECK(mul_i32fast_res == 1374494264); TEST_CHECK(mul_i32least_res == 1374494264);
mul_i32fast_res = 12345; mul_i32least_res = 12345;
guf_wrapping_mul_int_fast32_t(INT32_MIN, -1, &mul_i32fast_res); guf_wrapping_mul_least_i32(INT32_MIN, -1, &mul_i32least_res);
TEST_CHECK(mul_i32fast_res == INT32_MIN); TEST_CHECK(mul_i32least_res == INT32_MIN);
mul_i32fast_res = 12345; mul_i32least_res = 12345;
guf_wrapping_mul_int_fast32_t(-2147483648, 2147483640, &mul_i32fast_res); guf_wrapping_mul_least_i32(-2147483648, 2147483640, &mul_i32least_res);
TEST_CHECK(mul_i32fast_res == 0); TEST_CHECK(mul_i32least_res == 0);
mul_i32fast_res = 12345; mul_i32least_res = 12345;
guf_wrapping_mul_int_fast32_t(-2048, -314159265, &mul_i32fast_res); guf_wrapping_mul_least_i32(-2048, -314159265, &mul_i32least_res);
TEST_CHECK(mul_i32fast_res == -846919680); TEST_CHECK(mul_i32least_res == -846919680);
mul_i32fast_res = 12345; mul_i32least_res = 12345;
guf_wrapping_mul_int_fast32_t(4096, -314159265, &mul_i32fast_res); guf_wrapping_mul_least_i32(4096, -314159265, &mul_i32least_res);
TEST_CHECK(mul_i32fast_res == 1693839360); TEST_CHECK(mul_i32least_res == 1693839360);
@ -295,7 +295,7 @@ void CkdIntTest::test_ckd_uint()
for (int32_t b = 0; b <= UINT8_MAX; ++b) { for (int32_t b = 0; b <= UINT8_MAX; ++b) {
const int32_t add_res = a + b; const int32_t add_res = a + b;
const guf_math_ckd_result ckd_add = guf_ckd_add_u8((uint8_t)a, (uint8_t)b); const guf_math_ckd_result ckd_add = guf_ckd_add_u8((uint8_t)a, (uint8_t)b);
GUF_ASSERT(ckd_add == guf_ckd_add_uint_fast8_t((uint_fast8_t)a, (uint_fast8_t)b)); GUF_ASSERT(ckd_add == guf_ckd_add_least_u8((uint_least8_t)a, (uint_least8_t)b));
if (add_res > UINT8_MAX) { if (add_res > UINT8_MAX) {
TEST_CHECK(ckd_add == GUF_MATH_CKD_OVERFLOW_POS); TEST_CHECK(ckd_add == GUF_MATH_CKD_OVERFLOW_POS);
uint8_t saturated; uint8_t saturated;
@ -317,7 +317,7 @@ void CkdIntTest::test_ckd_uint()
const int32_t sub_res = a - b; const int32_t sub_res = a - b;
const guf_math_ckd_result ckd_sub = guf_ckd_sub_u8((uint8_t)a, (uint8_t)b); const guf_math_ckd_result ckd_sub = guf_ckd_sub_u8((uint8_t)a, (uint8_t)b);
GUF_ASSERT(ckd_sub == guf_ckd_sub_uint_fast8_t((uint_fast8_t)a, (uint_fast8_t)b)); GUF_ASSERT(ckd_sub == guf_ckd_sub_least_u8((uint_least8_t)a, (uint_least8_t)b));
if (sub_res < 0) { if (sub_res < 0) {
TEST_CHECK(ckd_sub == GUF_MATH_CKD_OVERFLOW_NEG); TEST_CHECK(ckd_sub == GUF_MATH_CKD_OVERFLOW_NEG);
uint8_t saturated; uint8_t saturated;
@ -338,7 +338,7 @@ void CkdIntTest::test_ckd_uint()
const int32_t mul_res = a * b; const int32_t mul_res = a * b;
const guf_math_ckd_result ckd_mul = guf_ckd_mul_u8((uint8_t)a, (uint8_t)b); const guf_math_ckd_result ckd_mul = guf_ckd_mul_u8((uint8_t)a, (uint8_t)b);
GUF_ASSERT(ckd_mul == guf_ckd_mul_uint_fast8_t((uint_fast8_t)a, (uint_fast8_t)b)); GUF_ASSERT(ckd_mul == guf_ckd_mul_least_u8((uint_least8_t)a, (uint_least8_t)b));
if (mul_res > UINT8_MAX) { if (mul_res > UINT8_MAX) {
TEST_CHECK(ckd_mul == GUF_MATH_CKD_OVERFLOW_POS); TEST_CHECK(ckd_mul == GUF_MATH_CKD_OVERFLOW_POS);
uint8_t saturated; uint8_t saturated;
@ -358,4 +358,4 @@ void CkdIntTest::test_ckd_uint()
} }
} }
} }
} }

View File

@ -1,5 +1,3 @@
- rename int_fastN function to iN and delete the fixed-width ones?
- fix readonly str/uninit ? - fix readonly str/uninit ?
- make guf_utf8_char 4 bytes (non-null terminated) - make guf_utf8_char 4 bytes (non-null terminated)

View File

@ -57,7 +57,7 @@ def generate_ckdint_functions(int_types: list, uint_types: list) -> Tuple[str, s
}} }}
""") """)
ckd_add_sub_uint_FAST = textwrap.dedent("""\ ckd_add_sub_uint_LEAST = textwrap.dedent("""\
GUF_MATH_CKDINT_KWRDS guf_math_ckd_result guf_ckd_add_{type_abbr}({type} a, {type} b) GUF_MATH_CKDINT_KWRDS guf_math_ckd_result guf_ckd_add_{type_abbr}({type} a, {type} b)
{{ {{
a = GUF_UWRAP_{bits}(a); a = GUF_UWRAP_{bits}(a);
@ -378,7 +378,7 @@ def generate_ckdint_functions(int_types: list, uint_types: list) -> Tuple[str, s
}} }}
""") """)
saturating_wrapping_uint_FAST = textwrap.dedent("""\ saturating_wrapping_uint_LEAST = textwrap.dedent("""\
GUF_MATH_CKDINT_KWRDS guf_math_ckd_result guf_saturating_add_{type_abbr}({type} a, {type} b, {type} *result) GUF_MATH_CKDINT_KWRDS guf_math_ckd_result guf_saturating_add_{type_abbr}({type} a, {type} b, {type} *result)
{{ {{
const guf_math_ckd_result check = guf_ckd_add_{type_abbr}(a, b); const guf_math_ckd_result check = guf_ckd_add_{type_abbr}(a, b);
@ -492,19 +492,19 @@ def generate_ckdint_functions(int_types: list, uint_types: list) -> Tuple[str, s
text_result_header += f"#ifdef {type.INT_MAX}\n" text_result_header += f"#ifdef {type.INT_MAX}\n"
end = "" end = ""
if "uint_fast" in type.INT_TYPE: if "uint_least" in type.INT_TYPE:
bits = 0 bits = 0
if "fast8" in type.INT_TYPE: if "least8" in type.INT_TYPE:
bits = 8 bits = 8
elif "fast16" in type.INT_TYPE: elif "least16" in type.INT_TYPE:
bits = 16 bits = 16
elif "fast32" in type.INT_TYPE: elif "least32" in type.INT_TYPE:
bits = 32 bits = 32
elif "fast64" in type.INT_TYPE: elif "least64" in type.INT_TYPE:
bits = 64 bits = 64
else: else:
assert(False) assert(False)
text_result += ckd_add_sub_uint_FAST.format(type = type.INT_TYPE, type_abbr = type.INT_TYPE_ABBR, int_min = type.INT_MIN, int_max = type.INT_MAX, bits = str(bits)) text_result += ckd_add_sub_uint_LEAST.format(type = type.INT_TYPE, type_abbr = type.INT_TYPE_ABBR, int_min = type.INT_MIN, int_max = type.INT_MAX, bits = str(bits))
else: else:
text_result += ckd_add_sub_uint.format(type = type.INT_TYPE, type_abbr = type.INT_TYPE_ABBR, int_min = type.INT_MIN, int_max = type.INT_MAX) + end text_result += ckd_add_sub_uint.format(type = type.INT_TYPE, type_abbr = type.INT_TYPE_ABBR, int_min = type.INT_MIN, int_max = type.INT_MAX) + end
text_result_header += ckd_add_sub_uint_header.format(type = type.INT_TYPE, type_abbr = type.INT_TYPE_ABBR, int_min = type.INT_MIN, int_max = type.INT_MAX) + end text_result_header += ckd_add_sub_uint_header.format(type = type.INT_TYPE, type_abbr = type.INT_TYPE_ABBR, int_min = type.INT_MIN, int_max = type.INT_MAX) + end
@ -540,19 +540,19 @@ def generate_ckdint_functions(int_types: list, uint_types: list) -> Tuple[str, s
text_result_header += f"#ifdef {type.INT_MAX}\n" text_result_header += f"#ifdef {type.INT_MAX}\n"
end = "" end = ""
if "uint_fast" in type.INT_TYPE: if "uint_least" in type.INT_TYPE:
bits = 0 bits = 0
if "fast8" in type.INT_TYPE: if "least8" in type.INT_TYPE:
bits = 8 bits = 8
elif "fast16" in type.INT_TYPE: elif "least16" in type.INT_TYPE:
bits = 16 bits = 16
elif "fast32" in type.INT_TYPE: elif "least32" in type.INT_TYPE:
bits = 32 bits = 32
elif "fast64" in type.INT_TYPE: elif "least64" in type.INT_TYPE:
bits = 64 bits = 64
else: else:
assert(False) assert(False)
text_result += saturating_wrapping_uint_FAST.format(type = type.INT_TYPE, type_abbr = type.INT_TYPE_ABBR, int_min = type.INT_MIN, int_max = type.INT_MAX, bits = str(bits)) + end text_result += saturating_wrapping_uint_LEAST.format(type = type.INT_TYPE, type_abbr = type.INT_TYPE_ABBR, int_min = type.INT_MIN, int_max = type.INT_MAX, bits = str(bits)) + end
else: else:
text_result += saturating_wrapping_uint.format(type = type.INT_TYPE, type_abbr = type.INT_TYPE_ABBR, int_min = type.INT_MIN, int_max = type.INT_MAX) + end text_result += saturating_wrapping_uint.format(type = type.INT_TYPE, type_abbr = type.INT_TYPE_ABBR, int_min = type.INT_MIN, int_max = type.INT_MAX) + end
@ -577,10 +577,10 @@ if __name__ == "__main__":
# TODO: size_t is not necessarily the unsigned ptrdiff_t equivalent # TODO: size_t is not necessarily the unsigned ptrdiff_t equivalent
IntType(INT_TYPE = "ptrdiff_t", INT_TYPE_ABBR = "ptrdiff_t", INT_MIN = "PTRDIFF_MIN", INT_MAX = "PTRDIFF_MAX", UINT_TYPE = "size_t", UINT_MAX = "SIZE_MAX"), IntType(INT_TYPE = "ptrdiff_t", INT_TYPE_ABBR = "ptrdiff_t", INT_MIN = "PTRDIFF_MIN", INT_MAX = "PTRDIFF_MAX", UINT_TYPE = "size_t", UINT_MAX = "SIZE_MAX"),
IntType(INT_TYPE = "int_fast8_t", INT_TYPE_ABBR = "int_fast8_t", INT_MIN = "GUF_INT8_MIN", INT_MAX = "GUF_INT8_MAX", UINT_TYPE = "uint_fast8_t", UINT_MAX = "GUF_UINT8_MAX"), IntType(INT_TYPE = "int_least8_t", INT_TYPE_ABBR = "least_i8", INT_MIN = "GUF_INT8_MIN", INT_MAX = "GUF_INT8_MAX", UINT_TYPE = "uint_least8_t", UINT_MAX = "GUF_UINT8_MAX"),
IntType(INT_TYPE = "int_fast16_t", INT_TYPE_ABBR = "int_fast16_t", INT_MIN = "GUF_INT16_MIN", INT_MAX = "GUF_INT16_MAX", UINT_TYPE = "uint_fast16_t", UINT_MAX = "GUF_UINT16_MAX"), IntType(INT_TYPE = "int_least16_t", INT_TYPE_ABBR = "least_i16", INT_MIN = "GUF_INT16_MIN", INT_MAX = "GUF_INT16_MAX", UINT_TYPE = "uint_least16_t", UINT_MAX = "GUF_UINT16_MAX"),
IntType(INT_TYPE = "int_fast32_t", INT_TYPE_ABBR = "int_fast32_t", INT_MIN = "GUF_INT32_MIN", INT_MAX = "GUF_INT32_MAX", UINT_TYPE = "uint_fast32_t", UINT_MAX = "GUF_UINT32_MAX"), IntType(INT_TYPE = "int_least32_t", INT_TYPE_ABBR = "least_i32", INT_MIN = "GUF_INT32_MIN", INT_MAX = "GUF_INT32_MAX", UINT_TYPE = "uint_least32_t", UINT_MAX = "GUF_UINT32_MAX"),
IntType(INT_TYPE = "int_fast64_t", INT_TYPE_ABBR = "int_fast64_t", INT_MIN = "GUF_INT64_MIN", INT_MAX = "GUF_INT64_MAX", UINT_TYPE = "uint_fast64_t", UINT_MAX = "GUF_UINT64_MAX"), IntType(INT_TYPE = "int_least64_t", INT_TYPE_ABBR = "least_i64", INT_MIN = "GUF_INT64_MIN", INT_MAX = "GUF_INT64_MAX", UINT_TYPE = "uint_least64_t", UINT_MAX = "GUF_UINT64_MAX"),
IntType(INT_TYPE = "int8_t", INT_TYPE_ABBR = "i8", INT_MIN = "INT8_MIN", INT_MAX = "INT8_MAX", UINT_TYPE = "uint8_t", UINT_MAX = "GUF_UINT8_MAX", is_optional = True), IntType(INT_TYPE = "int8_t", INT_TYPE_ABBR = "i8", INT_MIN = "INT8_MIN", INT_MAX = "INT8_MAX", UINT_TYPE = "uint8_t", UINT_MAX = "GUF_UINT8_MAX", is_optional = True),
IntType(INT_TYPE = "int16_t", INT_TYPE_ABBR = "i16", INT_MIN = "INT16_MIN", INT_MAX = "INT16_MAX", UINT_TYPE = "uint16_t", UINT_MAX = "GUF_UINT16_MAX", is_optional = True), IntType(INT_TYPE = "int16_t", INT_TYPE_ABBR = "i16", INT_MIN = "INT16_MIN", INT_MAX = "INT16_MAX", UINT_TYPE = "uint16_t", UINT_MAX = "GUF_UINT16_MAX", is_optional = True),
@ -596,10 +596,10 @@ if __name__ == "__main__":
UintType(INT_TYPE = "size_t", INT_TYPE_ABBR = "size_t", INT_MIN = "0", INT_MAX = "SIZE_MAX"), UintType(INT_TYPE = "size_t", INT_TYPE_ABBR = "size_t", INT_MIN = "0", INT_MAX = "SIZE_MAX"),
UintType(INT_TYPE = "uint_fast8_t", INT_TYPE_ABBR = "uint_fast8_t", INT_MIN = "0", INT_MAX = "GUF_UINT8_MAX"), UintType(INT_TYPE = "uint_least8_t", INT_TYPE_ABBR = "least_u8", INT_MIN = "0", INT_MAX = "GUF_UINT8_MAX"),
UintType(INT_TYPE = "uint_fast16_t", INT_TYPE_ABBR = "uint_fast16_t", INT_MIN = "0", INT_MAX = "GUF_UINT16_MAX"), UintType(INT_TYPE = "uint_least16_t", INT_TYPE_ABBR = "least_u16", INT_MIN = "0", INT_MAX = "GUF_UINT16_MAX"),
UintType(INT_TYPE = "uint_fast32_t", INT_TYPE_ABBR = "uint_fast32_t", INT_MIN = "0", INT_MAX = "GUF_UINT32_MAX"), UintType(INT_TYPE = "uint_least32_t", INT_TYPE_ABBR = "least_u32", INT_MIN = "0", INT_MAX = "GUF_UINT32_MAX"),
UintType(INT_TYPE = "uint_fast64_t", INT_TYPE_ABBR = "uint_fast64_t", INT_MIN = "0", INT_MAX = "GUF_UINT64_MAX"), UintType(INT_TYPE = "uint_least64_t", INT_TYPE_ABBR = "least_u64", INT_MIN = "0", INT_MAX = "GUF_UINT64_MAX"),
UintType(INT_TYPE = "uint8_t", INT_TYPE_ABBR = "u8", INT_MIN = "0", INT_MAX = "UINT8_MAX", is_optional = True), UintType(INT_TYPE = "uint8_t", INT_TYPE_ABBR = "u8", INT_MIN = "0", INT_MAX = "UINT8_MAX", is_optional = True),
UintType(INT_TYPE = "uint16_t", INT_TYPE_ABBR = "u16", INT_MIN = "0", INT_MAX = "UINT16_MAX", is_optional = True), UintType(INT_TYPE = "uint16_t", INT_TYPE_ABBR = "u16", INT_MIN = "0", INT_MAX = "UINT16_MAX", is_optional = True),