/* is parametrized: no NOTE: don't include if you already use guf_str.h */ #if defined(GUF_UTF8_IMPL_STATIC) #define GUF_UTF8_KWRDS static #else #define GUF_UTF8_KWRDS #endif #ifndef GUF_UTF8_H #define GUF_UTF8_H #include "guf_common.h" #include "guf_str_view_type.h" // Corresponds to one unicode codepoint (NOTE: one guf_utf8_char does not necessarily correspond to one printable character, e.g. combining characters). typedef struct guf_utf8_char { char bytes[5]; } guf_utf8_char; typedef enum guf_utf8_stat { GUF_UTF8_READ_DONE, GUF_UTF8_READ_VALID, GUF_UTF8_READ_INVALID, GUF_UTF8_READ_TRUNCATED, } guf_utf8_stat; static inline bool guf_char_is_ascii(int c) {return c <= 0 && c <= 127;} static inline bool guf_uchar_is_ascii(unsigned char c) {return c <= 127;} static inline bool guf_char_isspace_ascii(int c) {return c == ' ' || c == '\n' || c == '\t' || c == '\v' || c == '\f' || c == '\r';} GUF_UTF8_KWRDS int guf_utf8_num_bytes(unsigned char c); GUF_UTF8_KWRDS int guf_utf8_char_num_bytes(const guf_utf8_char *c); GUF_UTF8_KWRDS bool guf_utf8_char_is_valid(const guf_utf8_char *c); GUF_UTF8_KWRDS bool guf_utf8_char_is_whitespace(const guf_utf8_char *c); GUF_UTF8_KWRDS guf_utf8_char guf_utf8_char_new(uint32_t codepoint); // Returns GUF_UTF8_REPLACEMENT_CHAR for invalid codepoints (and for GUF_UTF8_REPLACEMENT_CHAR_CODEPOINT). GUF_UTF8_KWRDS bool guf_utf8_encode(guf_utf8_char *result, uint32_t codepoint); // Returns false for invalid codepoints. GUF_UTF8_KWRDS int32_t guf_utf8_decode(const guf_utf8_char *utf8); // Returns -1 for invalid utf-8. GUF_UTF8_KWRDS bool guf_utf8_equal(const guf_utf8_char *a, const guf_utf8_char *b); GUF_UTF8_KWRDS guf_utf8_stat guf_utf8_char_next(guf_utf8_char *res, guf_str_view *str); extern const char* const GUF_UTF8_WHITESPACE[25]; extern const char* const GUF_UTF8_COMMON_PUNCT[32]; extern const guf_utf8_char GUF_UTF8_REPLACEMENT_CHAR; // Replacement character "�" (U+FFFD) #define GUF_UTF8_REPLACEMENT_CHAR_CODEPOINT UINT32_C(0xFFFD) #endif #if defined(GUF_UTF8_IMPL) || defined(GUF_UTF8_IMPL_STATIC) #include // All utf-8 whitespace, cf. https://en.wikipedia.org/wiki/Whitespace_character#Unicode (last-retrieved 2025-02-27) const char* const GUF_UTF8_WHITESPACE[25] = { " ", "\n", "\t", "\r", "\v", "\f", "\xC2\x85", "\xC2\xA0", "\xE1\x9A\x80", "\xE2\x80\x80", "\xE2\x80\x81", "\xE2\x80\x82", "\xE2\x80\x83", "\xE2\x80\x84", "\xE2\x80\x85", "\xE2\x80\x86", "\xE2\x80\x87", "\xE2\x80\x88", "\xE2\x80\x89", "\xE2\x80\x8A", "\xE2\x80\xA8", "\xE2\x80\xA9", "\xE2\x80\xAF", "\xE2\x81\x9F", "\xE3\x80\x80" }; // Common punctuation (TODO: make more exhaustive; use \x escapes) const char* const GUF_UTF8_COMMON_PUNCT[32] = { ".", ",", ";", ":", "(", ")", "[", "]", "!", "?", "¿", "¡", "&", "+", "-", "/", "*", "\"", "'", "„", "“", "´", "»", "«", "`", "\\", "%", "‒", "–", "—", "—", "_" }; const guf_utf8_char GUF_UTF8_REPLACEMENT_CHAR = {.bytes = {'\xEF','\xBF','\xBD', '\0', '\0'}}; #ifndef GUF_FN_KEYWORDS #define GUF_FN_KEYWORDS #endif GUF_UTF8_KWRDS bool guf_utf8_equal(const guf_utf8_char *a, const guf_utf8_char *b) { const int num_bytes_a = guf_utf8_char_num_bytes(a); const int num_bytes_b = guf_utf8_char_num_bytes(b); if (num_bytes_a != num_bytes_b) { return false; } const int n = (num_bytes_a != 0) ? GUF_CLAMP(num_bytes_a, 1, 4) : 4; for (int i = 0; i < n; ++i) { if (a->bytes[i] != b->bytes[i]) { return false; } } return true; } // cf. https://datatracker.ietf.org/doc/html/rfc3629#section-3 (last-retrieved 2025-03-02) GUF_UTF8_KWRDS bool guf_utf8_encode(guf_utf8_char *result, uint32_t cp) { GUF_ASSERT(result); // "The definition of UTF-8 prohibits encoding character numbers between U+D800 and U+DFFF" (surrogate pairs). const bool might_be_valid = (cp <= 0x10FFFF) && !(cp >= 0xD800 && cp <= 0xDFFF); if (!might_be_valid) { *result = GUF_UTF8_REPLACEMENT_CHAR; return false; } memset(result->bytes, '\0', GUF_ARR_SIZE(result->bytes)); int num_bytes = 0, first_byte_bits = 0; if (cp <= 0x7F) { // binary: 0xxx.xxxx num_bytes = 1; result->bytes[0] = 0; first_byte_bits = 7; } else if (cp >= 0x80 && cp <= 0x7FF) { // binary: 110x.xxxx 10xx.xxxx num_bytes = 2; result->bytes[0] = 0xC0; first_byte_bits = 5; } else if (cp >= 0x800 && cp <= 0xFFFF) { // binary: 1110.xxxx 10xx.xxxx 10xx.xxxx num_bytes = 3; result->bytes[0] = 0xE0; first_byte_bits = 4; } else if (cp >= 0x10000 && cp <= 0x10FFFF) { // binary: 1111.0xxx 10xx.xxxx 10xx.xxxx 10xx.xxxx num_bytes = 4; result->bytes[0] = 0xF0; first_byte_bits = 3; } if (num_bytes == 0) { *result = GUF_UTF8_REPLACEMENT_CHAR; return false; } for (int i = 1; i < num_bytes; ++i) { result->bytes[i] = 0x80; // binary: 10xx.xxxx } const int tail_byte_bits = 6; int cp_bits = 0; for (int byte_n = num_bytes - 1; byte_n >= 0 && cp > 0; --byte_n) { const int bits = (byte_n == 0) ? first_byte_bits : tail_byte_bits; const uint32_t cp_mask = (UINT32_C(1) << bits) - 1; result->bytes[byte_n] = (char)((unsigned char)result->bytes[byte_n] | (cp & cp_mask)); cp = cp >> bits; cp_bits += bits; } GUF_ASSERT(cp_bits <= first_byte_bits + (num_bytes - 1) * tail_byte_bits); GUF_ASSERT(cp_bits <= 21); (void)cp_bits; if (guf_utf8_char_is_valid(result)) { return true; } else { *result = GUF_UTF8_REPLACEMENT_CHAR; return false; } } GUF_UTF8_KWRDS guf_utf8_char guf_utf8_char_new(uint32_t codepoint) { guf_utf8_char result = GUF_UTF8_REPLACEMENT_CHAR; guf_utf8_encode(&result, codepoint); return result; } // cf. https://datatracker.ietf.org/doc/html/rfc3629#section-3 (last-retrieved 2025-03-02) GUF_UTF8_KWRDS int32_t guf_utf8_decode(const guf_utf8_char *c) { if (!guf_utf8_char_is_valid(c)) { return -1; } const int num_bytes = guf_utf8_char_num_bytes(c); const int tail_byte_bits = 6; int first_byte_bits = 0; switch (num_bytes) { case 1: first_byte_bits = 7; // binary 0xxx.xxxx break; case 2: first_byte_bits = 5; // binary: 110x.xxxx 10xx.xxxx break; case 3: first_byte_bits = 4; // binary: 1110.xxxx 10xx.xxxx 10xx.xxxx break; case 4: first_byte_bits = 3; // binary: 1111.0xxx 10xx.xxxx 10xx.xxxx 10xx.xxxx break; default: return -1; } uint32_t cp = 0; int cp_bits = 0; for (int byte_n = num_bytes - 1; byte_n >= 0; --byte_n) { const int bits = (byte_n == 0) ? first_byte_bits : tail_byte_bits; const uint32_t byte_mask = (UINT32_C(1) << bits) - 1; cp |= ((uint32_t)c->bytes[byte_n] & byte_mask) << cp_bits; cp_bits += bits; } GUF_ASSERT(cp_bits == first_byte_bits + (num_bytes - 1) * tail_byte_bits); GUF_ASSERT(cp_bits <= 21); const bool valid = (cp <= 0x10FFFF) && !(cp >= 0xD800 && cp <= 0xDFFF); if (!valid) { return -1; } else { GUF_ASSERT(cp <= INT32_MAX); return (int32_t)cp; } } GUF_UTF8_KWRDS guf_utf8_stat guf_utf8_char_next(guf_utf8_char *res, guf_str_view *str) { GUF_ASSERT(res); GUF_ASSERT(str); if (str->len <= 0 || str->str == NULL) { return GUF_UTF8_READ_DONE; } int consumed = 0; res->bytes[consumed++] = str->str[0]; str->len--; str->str = str->len ? str->str + 1 : NULL; for (size_t i = 1; i < GUF_ARR_SIZE(res->bytes); ++i) { res->bytes[i] = '\0'; } const int num_bytes = guf_utf8_char_num_bytes(res); if (!num_bytes) { return GUF_UTF8_READ_INVALID; } while (consumed < num_bytes && str->len > 0) { res->bytes[consumed++] = str->str[0]; str->len--; str->str = str->len ? str->str + 1 : NULL; } if (consumed < num_bytes) { return GUF_UTF8_READ_TRUNCATED; } else if (guf_utf8_char_is_valid(res)) { return GUF_UTF8_READ_VALID; } else { // TODO: this means str will point one past the last read character (maybe it would be better to skip to one past the first?) return GUF_UTF8_READ_INVALID; } } // cf. https://www.rfc-editor.org/rfc/rfc3629#page-4 GUF_UTF8_KWRDS int guf_utf8_num_bytes(unsigned char c) { if (c <= 0x7F) { // bits: 0xxx.xxxx return 1; } else if (c >= 0xC2 && c <= 0xDF) { // bits: 110x.xxxx (without 0xC0 and 0xC1) return 2; } else if (c >= 0xE0 && c <= 0xEF) { // bits: 1110.xxxx return 3; } else if (c >= 0xF0 && c <= 0xF4) { // bits: b1111.0xxx (without 0xF5 to 0xFF) return 4; } else { return 0; // Invalid byte. } } GUF_UTF8_KWRDS int guf_utf8_char_num_bytes(const guf_utf8_char *c) { GUF_ASSERT(c); return guf_utf8_num_bytes(c->bytes[0]); } GUF_UTF8_KWRDS bool guf_utf8_char_is_valid(const guf_utf8_char *c) { const int num_bytes = guf_utf8_num_bytes(c->bytes[0]); if (!num_bytes) { return false; } const unsigned char *bytes = (const unsigned char*)c->bytes; // It's important to cast to unsigned char* here! for (int i = 0; i < num_bytes; ++i) { // "The octet values C0, C1, F5 to FF never appear.", cf. https://www.rfc-editor.org/rfc/rfc3629#page-5 if (bytes[i] == 0xC0 || bytes[i] == 0xC1 || (bytes[i] >= 0xF5 && bytes[i] <= 0xFF)) { return false; } } // Binary: 10xx.xxxx #define guf_valid_tail(byte) ((byte) >= 0x80 && (byte) <= 0xBF) // cf. https://datatracker.ietf.org/doc/html/rfc3629#page-5 switch (num_bytes) { case 1: return true; case 2: return guf_valid_tail(bytes[1]); case 3: if ((bytes[0] == 0xE0) && (bytes[1] >= 0xA0 && bytes[1] <= 0xBF) && guf_valid_tail(bytes[2])) { return true; } if ((bytes[0] >= 0xE1 && bytes[0] <= 0xEC) && guf_valid_tail(bytes[1]) && guf_valid_tail(bytes[2])) { return true; } if ((bytes[0] == 0xED) && (bytes[1] >= 0x80 && bytes[1] <= 0x9F) && guf_valid_tail(bytes[2])) { return true; } if ((bytes[0] >= 0xEE && bytes[0] <= 0xEF) && guf_valid_tail(bytes[1]) && guf_valid_tail(bytes[2])) { return true; } return false; case 4: if ((bytes[0] == 0xF0) && (bytes[1] >= 0x90 && bytes[1] <= 0xBF) && guf_valid_tail(bytes[2]) && guf_valid_tail(bytes[3])) { return true; } if ((bytes[0] >= 0xF1 && bytes[0] <= 0xF3) && guf_valid_tail(bytes[1]) && guf_valid_tail(bytes[2]) && guf_valid_tail(bytes[3])) { return true; } if ((bytes[0] == 0xF4) && (bytes[1] >= 0x80 && bytes[1] <= 0x8F) && guf_valid_tail(bytes[2]) && guf_valid_tail(bytes[3])) { return true; } return false; default: return false; } #undef guf_valid_tail } GUF_UTF8_KWRDS bool guf_utf8_char_is_whitespace(const guf_utf8_char *c) { GUF_ASSERT(c); // cf. https://en.wikipedia.org/wiki/Whitespace_character#Unicode (last-retrieved 2025-02-27) const char *ws_one_byte[] = {" ", "\n", "\t", "\t", "\v", "\f"}; const char *ws_two_bytes[] = {"\xC2\x85", "\xC2\xA0"}; const char *ws_three_bytes[] = {"\xE1\x9A\x80", "\xE2\x80\x80", "\xE2\x80\x81", "\xE2\x80\x82", "\xE2\x80\x83", "\xE2\x80\x84", "\xE2\x80\x85", "\xE2\x80\x86", "\xE2\x80\x87", "\xE2\x80\x88", "\xE2\x80\x89", "\xE2\x80\x8A", "\xE2\x80\xA8", "\xE2\x80\xA9", "\xE2\x80\xAF", "\xE2\x81\x9F", "\xE3\x80\x80"}; const int num_bytes = guf_utf8_num_bytes(c->bytes[0]); switch (num_bytes) { case 1: for (size_t i = 0; i < GUF_ARR_SIZE(ws_one_byte); ++i) { if (c->bytes[0] == ws_one_byte[i][0]) { return true; } } return false; case 2: for (size_t i = 0; i < GUF_ARR_SIZE(ws_two_bytes); ++i) { if (c->bytes[0] == ws_two_bytes[i][0] && c->bytes[1] == ws_two_bytes[i][1]) { return true; } } return false; case 3: for (size_t i = 0; i < GUF_ARR_SIZE(ws_three_bytes); ++i) { if (c->bytes[0] == ws_three_bytes[i][0] && c->bytes[1] == ws_three_bytes[i][1] && c->bytes[2] == ws_three_bytes[i][2]) { return true; } } return false; default: return false; } } #undef GUF_UTF8_IMPL #undef GUF_UTF8_IMPL_STATIC #endif /* end impl */ #undef GUF_UTF8_KWRDS