#if defined(GUF_STR_IMPL_STATIC) #define GUF_STR_KWRDS static #else #define GUF_STR_KWRDS #endif #ifndef GUF_STR_H #define GUF_STR_H #include "guf_common.h" #include "guf_alloc.h" #include "guf_str_view_type.h" #include "guf_utf8.h" #include "guf_hash.h" // cf. libc++ short-string optimisation: https://joellaity.com/2020/01/31/string.html (last-retrieved 2025-03-10) typedef struct guf_str_internal_long_ { size_t capacity; // If long string: capacity's least significant bit always set to 1 (or its most significant bit for big-endian platforms) size_t size; char *c_str; } guf_str_internal_long_; #define GUF_STR_SSO_BUF_CAP (sizeof(guf_str_internal_long_) - sizeof(unsigned char)) /* 23 bytes on 64-bit platforms, 11 bytes on 32-bit platforms */ #if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L) || (defined(__cplusplus) && __cplusplus >= 201103L) static_assert(GUF_STR_SSO_BUF_CAP > 0, "GUF_STR_SSO_BUF_CAP < 0 (this is very weird)"); // Basically cannot fail. static_assert(GUF_STR_SSO_BUF_CAP < 0x80, "GUF_STR_SSO_BUF_CAP >= 128 (no support for platforms with wordsize >= 512-bits)"); // Could fail on hypothetical platforms with 512-bit wordsize (and above). #endif typedef struct guf_str_internal_short_ { unsigned char size; // size overlaps with the first byte of guf_str_internal_long_.capacity [1] char c_str[GUF_STR_SSO_BUF_CAP]; } guf_str_internal_short_; /* [1] The first byte of guf_str_internal_long_.capacity is its least-significant-byte on little-endian platforms, and its most-significant byte on big-endian platforms. */ typedef struct guf_str { union { guf_str_internal_long_ lng; guf_str_internal_short_ shrt; } data; // 24 bytes on 64-bit platforms, 12 bytes on 32-bit platforms. guf_allocator *allocator; // Wasteful (8 bytes on 64-bit platforms...), but keeping this pointer also allows us to have "read-only strings" (a string is read-only if allocator == NULL) } guf_str; // Total: 32 bytes on 64-bit platforms, 16 bytes on 32-bit platforms. #define GUF_CSTR_TO_VIEW(CSTR) ((guf_str_view){.str = (CSTR), .len = (ptrdiff_t)strlen((CSTR))}) #define GUF_STR_TO_VIEW(GUF_STR_PTR) ((guf_str_view){.str = guf_str_const_cstr((GUF_STR_PTR)), .len = (ptrdiff_t)guf_str_len((GUF_STR_PTR))}) #define GUF_CSTR_TO_READONLY_STR(CSTR) ((guf_str){.allocator = NULL, .data.lng.c_str = (CSTR), .data.lng.size = strlen(CSTR) + 1, .data.lng.capacity = 0}) #ifdef __cplusplus // Standard C++ does not have compound literals like C99... #define GUF_CSTR_TO_VIEW_CPP(CSTR) guf_str_view{.str = (CSTR), .len = (ptrdiff_t)strlen(CSTR)} #endif // guf_str_view: GUF_STR_KWRDS bool guf_str_view_is_valid(guf_str_view sv); GUF_STR_KWRDS guf_str guf_str_substr_cpy(guf_str_view str, ptrdiff_t pos, size_t count); // not necessary GUF_STR_KWRDS guf_str_view guf_substr_view(guf_str_view str, ptrdiff_t pos, ptrdiff_t count); GUF_STR_KWRDS guf_str_view guf_str_view_trim_left(guf_str_view str); GUF_STR_KWRDS guf_str_view guf_str_view_trim_right(guf_str_view str); GUF_STR_KWRDS guf_hash_size_t guf_str_view_hash(const guf_str_view *sv); GUF_STR_KWRDS uint64_t guf_str_view_hash64(const guf_str_view *sv); GUF_STR_KWRDS uint32_t guf_str_view_hash32(const guf_str_view *sv); GUF_STR_KWRDS bool guf_str_view_equal(const guf_str_view* a, const guf_str_view* b); GUF_STR_KWRDS bool guf_str_view_equal_val_arg(guf_str_view a_val, guf_str_view b_val); GUF_STR_KWRDS int guf_str_view_cmp(const void *str_view_a, const void *str_view_b); // For qsort etc. GUF_STR_KWRDS guf_str_view guf_str_next_tok(guf_str_view *input, const guf_str_view *delims, ptrdiff_t num_delims, const guf_str_view *preserved_delims, ptrdiff_t num_preserved_delims); // guf_str: GUF_STR_KWRDS guf_str *guf_str_try_init(guf_str *str, guf_str_view str_view, guf_allocator *alloc, guf_err *err); GUF_STR_KWRDS guf_str *guf_str_init(guf_str *str, guf_str_view str_view, guf_allocator *alloc); GUF_STR_KWRDS guf_str *guf_str_try_init_from_cstr(guf_str *str, const char* c_str, guf_allocator *alloc, guf_err *err); GUF_STR_KWRDS guf_str *guf_str_init_from_cstr(guf_str *str, const char* c_str, guf_allocator *alloc); GUF_STR_KWRDS guf_str *guf_str_init_empty(guf_str *str, guf_allocator *alloc); GUF_STR_KWRDS guf_str guf_str_try_new(guf_str_view str_view, guf_allocator *alloc, guf_err *err); GUF_STR_KWRDS guf_str guf_str_new(guf_str_view str_view, guf_allocator *alloc); GUF_STR_KWRDS guf_str guf_str_try_new_from_cstr(const char *c_str, guf_allocator *alloc, guf_err *err); GUF_STR_KWRDS guf_str guf_str_new_from_cstr(const char *c_str, guf_allocator *alloc); GUF_STR_KWRDS guf_str guf_str_new_empty(guf_allocator *alloc); GUF_STR_KWRDS guf_str guf_str_try_new_substr(guf_str_view str_view, ptrdiff_t pos, ptrdiff_t len, guf_allocator *alloc, guf_err *err); GUF_STR_KWRDS guf_str guf_str_new_substr(guf_str_view str_view, ptrdiff_t pos, ptrdiff_t len, guf_allocator *alloc); GUF_STR_KWRDS bool guf_str_equal(const guf_str *a, const guf_str *b); GUF_STR_KWRDS bool guf_str_equals_cstr(const guf_str *a, const char *c_str); GUF_STR_KWRDS bool guf_str_equals_strview(const guf_str *a, guf_str_view b); GUF_STR_KWRDS void guf_str_free(guf_str *str, void *ctx); GUF_STR_KWRDS guf_str *guf_str_append(guf_str *str, guf_str_view to_append); GUF_STR_KWRDS guf_str *guf_str_append_cstr(guf_str *str, const char *cstr_to_append); // Not necessary GUF_STR_KWRDS guf_str *guf_str_substr(guf_str* str, size_t pos, size_t count); GUF_STR_KWRDS guf_str *guf_str_try_reserve(guf_str *str, ptrdiff_t min_capacity, guf_err *err); GUF_STR_KWRDS guf_str *guf_str_reserve(guf_str *str, ptrdiff_t min_capacity); GUF_STR_KWRDS guf_str *guf_str_try_shrink_to_fit(guf_str *str, guf_err *err); GUF_STR_KWRDS guf_str *guf_str_shrink_to_fit(guf_str *str); GUF_STR_KWRDS char guf_str_pop_back(guf_str *str); GUF_STR_KWRDS char guf_str_pop_front(guf_str *str); GUF_STR_KWRDS char *guf_str_at(guf_str *str, size_t idx); GUF_STR_KWRDS char *guf_str_back(guf_str *str); GUF_STR_KWRDS char *guf_str_front(guf_str *str); GUF_STR_KWRDS const char *guf_str_const_cstr(const guf_str *str); GUF_STR_KWRDS size_t guf_str_len(const guf_str *str); // The length (in chars) without the final zero-terminator. GUF_STR_KWRDS size_t guf_str_capacity(const guf_str *str); // The capacity (in chars) without the final zero-terminator. GUF_STR_KWRDS bool guf_str_is_short(const guf_str *str); GUF_STR_KWRDS bool guf_str_is_readonly(const guf_str *str); #endif // #define GUF_STR_IMPL_STATIC /*debug*/ #if defined(GUF_STR_IMPL) || defined(GUF_STR_IMPL_STATIC) #ifdef __cplusplus #error "Must compile guf_str as C99 (or above) because type-punning with unions is undefined behaviour in C++" #endif #include "guf_common.h" #include #ifdef GUF_STR_IMPL #define GUF_UTF8_IMPL #else #define GUF_UTF8_IMPL_STATIC #endif #include "guf_utf8.h" // TODO: find_first_of // guf_str: #if defined(GUF_PLATFORM_LITTLE_ENDIAN) #define GUF_STR_IS_LONG_MASK ((unsigned char)1) /* binary 0000.0001 */ #define GUF_STR_GET_CAP_MASK (~(size_t)1) /* binary 1111.1111 (1111.1111)* 1111.1110 */ static inline void guf_str_set_lng_cap_(guf_str *str, size_t capacity) { GUF_ASSERT(capacity % 2 == 0); GUF_ASSERT(capacity > GUF_STR_SSO_BUF_CAP); str->data.lng.capacity = capacity | ((size_t)1); } static inline void guf_str_set_shrt_size_(guf_str *str, unsigned char size) { GUF_ASSERT(size < GUF_STR_SSO_BUF_CAP && size < 0x80); str->data.shrt.size = (unsigned char)(size << 1u); } #elif defined(GUF_PLATFORM_BIG_ENDIAN) #define GUF_STR_IS_LONG_MASK ((unsigned char)0x80) /* binary 1000 0000 */ #define GUF_STR_GET_CAP_MASK ((size_t)SIZE_T_MAX >> 1u) /* binary 0111.1111 (1111.1111)* 1111.1111 */ static inline void guf_str_set_lng_cap_(guf_str *str, size_t capacity) { GUF_ASSERT(capacity % 2 == 0); GUF_ASSERT(capacity > GUF_STR_SSO_BUF_CAP); str->data.lng.capacity = ~GUF_STR_GET_CAP_MASK | (capacity >> 1); } static inline void guf_str_set_shrt_size_(guf_str *str, unsigned char size) { GUF_ASSERT(size < GUF_STR_SSO_BUF_CAP && size < 0x80); str->data.shrt.size = size; } #else #error "guf_str: neither GUF_PLATFORM_LITTLE_ENDIAN nor GUF_PLATFORM_BIG_ENDIAN is defined" #endif static bool guf_str_is_valid(const guf_str *str) { GUF_ASSERT(str); const bool is_readonly = !str->allocator; if (is_readonly) { bool valid_readonly = str->data.lng.c_str && str->data.lng.capacity == 0 && str->data.lng.size > 0; return valid_readonly; } const bool valid_allocator = str->allocator && str->allocator->alloc && str->allocator->free && str->allocator->realloc; if (!valid_allocator) { return false; } const unsigned char first_byte = str->data.shrt.size; // union type-punning (only legal in C99 and above; undefined behaviour in C++ I think). const bool is_short = (first_byte & GUF_STR_IS_LONG_MASK) == 0; if (is_short) { const size_t size = (str->data.shrt.size >> 1); return size > 0 && size <= GUF_STR_SSO_BUF_CAP && str->data.shrt.c_str[size - 1] == '\0'; } else { const size_t cap_with_null = str->data.lng.capacity & ~(size_t)1; return str->data.lng.c_str && cap_with_null > GUF_STR_SSO_BUF_CAP && str->data.lng.size > 0 && str->data.lng.size <= cap_with_null; } } GUF_STR_KWRDS bool guf_str_is_readonly(const guf_str *str) { GUF_ASSERT(guf_str_is_valid(str)); return !str->allocator; } GUF_STR_KWRDS bool guf_str_is_short(const guf_str *str) { GUF_ASSERT(guf_str_is_valid(str)); if (guf_str_is_readonly(str)) { return false; } const unsigned char first_byte = str->data.shrt.size; // union type-punning (only legal in C99 and above; undefined behaviour in C++ I think). return (first_byte & GUF_STR_IS_LONG_MASK) == 0; } GUF_STR_KWRDS size_t guf_str_capacity(const guf_str *str) { GUF_ASSERT(guf_str_is_valid(str)); if (guf_str_is_short(str)) { return GUF_STR_SSO_BUF_CAP - 1; } else if (guf_str_is_readonly(str)) { return 0; } else { // Precondition: all capacities for data.lng must be even. #if defined(GUF_PLATFORM_LITTLE_ENDIAN) GUF_ASSERT(str->data.lng.capacity & ~GUF_STR_GET_CAP_MASK); // Assert the is_long bit is actually set. const size_t cap_with_null = str->data.lng.capacity & GUF_STR_GET_CAP_MASK; #elif defined(GUF_PLATFORM_BIG_ENDIAN) GUF_ASSERT(str->data.lng.capacity & ~GUF_STR_GET_CAP_MASK); // Assert the is_long bit is actually set. const size_t cap_with_null = (str->data.lng.capacity & GUF_STR_GET_CAP_MASK) << 1; #endif GUF_ASSERT(cap_with_null > 0 && cap_with_null > GUF_STR_SSO_BUF_CAP); return cap_with_null - 1; } } GUF_STR_KWRDS size_t guf_str_len(const guf_str *str) { GUF_ASSERT(guf_str_is_valid(str)); if (guf_str_is_short(str)) { GUF_ASSERT(str->data.shrt.size > 0); #if defined(GUF_PLATFORM_LITTLE_ENDIAN) const size_t size = (str->data.shrt.size >> 1); #elif defined(GUF_PLATFORM_BIG_ENDIAN) const size_t size = (str->data.shrt.size); #endif GUF_ASSERT(size > 0 && size <= GUF_STR_SSO_BUF_CAP); return size - 1; } else { const size_t size = str->data.lng.size; GUF_ASSERT(size > 0); return size - 1; } } // GUF_STR_KWRDS guf_str *guf_str_try_reserve(guf_str *str, ptrdiff_t new_cap, guf_err *err) // { // GUF_ASSERT_RELEASE(guf_str_is_valid_writable(str)); // const ptrdiff_t size = guf_str_len(str) + 1; // const ptrdiff_t old_cap = guf_str_capacity(str); // if (new_cap <= old_cap) { // Growth not necessary. // guf_err_set_if_not_null(err, GUF_ERR_NONE); // return str; // } // if (guf_str_is_short(str)) { // a.) Was short string -> need initial allocation. // GUF_ASSERT(size == GUF_STR_SSO_BUFCAP); // char *c_str_new = str->allocator->alloc(new_cap, str->allocator->ctx); // if (!c_str_new) { // guf_err_set_or_panic(err, GUF_ERR_ALLOC_FAIL, "in guf_str_try_grow_if_necessary: Initial allocation failed."); // return NULL; // } // memcpy(c_str_new, str->data.stack.c_str, str->data.stack.size); // str->state = GUF_STR_STATE_INIT; // str->data.heap.c_str = c_str_new; // str->data.heap.size = size; // str->data.heap.capacity = new_cap; // guf_err_set_if_not_null(err, GUF_ERR_NONE); // return str; // } // // b.) Was already allocated -> need to grow existing allocation. // char *c_str_new = str->allocator->realloc(str->data.heap.c_str, old_cap, new_cap, str->allocator->ctx); // if (!c_str_new) { // guf_err_set_or_panic(err, GUF_ERR_ALLOC_FAIL, "in guf_str_try_grow_if_necessary: re-allocation failed."); // return NULL; // } // str->data.heap.c_str = c_str_new; // str->data.heap.capacity = new_cap; // guf_err_set_if_not_null(err, GUF_ERR_NONE); // return str; // } // GUF_STR_KWRDS guf_str *guf_str_try_init(guf_str *str, guf_str_view str_view, guf_allocator *alloc, guf_err *err) // { // if (!str) { // guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, "in guf_str_try_init: str is NULL"); // return NULL; // } else if (!alloc || !alloc->alloc || !alloc->realloc || !alloc->free) { // guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, "in guf_str_try_init: alloc (or allocs function pointers) is/are NULL"); // return NULL; // } // if (!guf_str_view_is_valid(str_view)) { // guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, "in guf_str_try_init: invalid str_view"); // return NULL; // } // str->allocator = alloc; // str->state = GUF_STR_STATE_SHORT; // str->data.stack.size = 1; // str->data.stack.c_str[0] = '\0'; // if (str_view.len == PTRDIFF_MAX) { // guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, "in guf_str_try_init: str_view.len + 1 would overflow ptrdiff_t"); // return NULL; // } // const ptrdiff_t size = str_view.len + 1; // GUF_ASSERT(size > 0); // if (size <= GUF_STR_SSO_BUFCAP) { // a) Fits in short-string. // str->state = GUF_STR_STATE_SHORT; // GUF_ASSERT(size <= UCHAR_MAX); // str->data.stack.size = (unsigned char)size; // memcpy(str->data.stack.c_str, str_view.str, str_view.len); // str->data.stack.c_str[str_view.len] = '\0'; // guf_err_set_if_not_null(err, GUF_ERR_NONE); // return str; // } // // b) Needs initial allocation. // guf_str_try_reserve(str, size, err); // if (err && *err != GUF_ERR_NONE) { // guf_panic(*err, "in guf_str_try_init: Initial allocation failed"); // return NULL; // } // GUF_ASSERT(!guf_str_is_short(str)); // memcpy(str->data.heap.c_str, str_view.str, str_view.len); // str->data.heap.c_str[str_view.len] = '\0'; // guf_err_set_if_not_null(err, GUF_ERR_NONE); // return str; // } // guf_str_view: GUF_STR_KWRDS bool guf_str_view_is_valid(guf_str_view sv) { if (sv.str) { return sv.len >= 0; } else { return sv.len == 0; } } GUF_STR_KWRDS guf_str_view guf_str_next_tok(guf_str_view *input, const guf_str_view *delims, ptrdiff_t num_delims, const guf_str_view *preserved_delims, ptrdiff_t num_preserved_delims) { if (input->len <= 0 || input->str == NULL) { return (guf_str_view){.str = NULL, .len = 0}; } ptrdiff_t max_delim_len = -1; for (ptrdiff_t i = 0; i < num_delims; ++i) { if (delims[i].len > max_delim_len) { max_delim_len = delims[i].len; } } guf_str_view tok = {.str = input->str, .len = 0}; guf_str_view prev_input = *input; guf_utf8_char ch = {0}; for (guf_utf8_stat stat = guf_utf8_char_next(&ch, input); stat != GUF_UTF8_READ_DONE; stat = guf_utf8_char_next(&ch, input)) { if (stat != GUF_UTF8_READ_VALID) { prev_input = *input; continue; } const int num_bytes = guf_utf8_char_num_bytes(&ch); for (ptrdiff_t delim_len = GUF_MIN(max_delim_len, prev_input.len); delim_len > 0; --delim_len) { guf_str_view delim_candidate = guf_substr_view(prev_input, 0, delim_len); for (ptrdiff_t delim_i = 0; delim_i < num_delims; ++delim_i) { if (guf_str_view_equal(&delim_candidate, delims + delim_i)) { // Found delim. bool preserved = false; if (preserved_delims && num_preserved_delims > 0) { for (ptrdiff_t preserved_i = 0; preserved_i < num_preserved_delims; ++preserved_i) { if (guf_str_view_equal(&delim_candidate, preserved_delims + preserved_i)) { preserved = true; break; } } } if (!preserved) { input->len = prev_input.len - delim_len; input->str = prev_input.len > 0 ? prev_input.str + delim_len : NULL; GUF_ASSERT(input->len >= 0); } else { input->str -= num_bytes; input->len += num_bytes; } if (tok.len == 0) { if (preserved) { input->str += num_bytes; input->len -= num_bytes; return delim_candidate; } tok.str = input->str; goto end; } else { return tok; } } } } tok.len += num_bytes; end:; prev_input = *input; } return tok; } GUF_STR_KWRDS guf_str_view guf_str_view_trim_left_ascii(guf_str_view sv) { if (sv.len <= 0 || sv.str == NULL) { return sv; } for (; sv.len > 0 && guf_char_isspace_ascii(*sv.str); --sv.len, ++sv.str); GUF_ASSERT(sv.len >= 0); GUF_ASSERT(sv.len == 0 || !guf_char_isspace_ascii(*sv.str)); return sv; } GUF_STR_KWRDS guf_str_view guf_str_view_trim_right_ascii(guf_str_view sv) { if (sv.len <= 0 || sv.str == NULL) { return sv; } for (; sv.len > 0 && guf_char_isspace_ascii(sv.str[sv.len - 1]); --sv.len); GUF_ASSERT(sv.len >= 0); GUF_ASSERT(sv.len == 0 || !guf_char_isspace_ascii(sv.str[sv.len - 1])); return sv; } GUF_STR_KWRDS guf_str_view guf_str_view_trim_right(guf_str_view sv) { if (sv.len <= 0 || sv.str == NULL) { return sv; } char c = sv.str[sv.len - 1]; while (sv.len > 0 && sv.str && c != ' ' && c != '\n' && c != '\t' && c != '\v' && c != '\f' && c != '\r') { --sv.len; ++sv.str; c = sv.str[0]; } return sv; } GUF_STR_KWRDS guf_str_view guf_substr_view(guf_str_view str, ptrdiff_t pos, ptrdiff_t count) { GUF_ASSERT(str.str); GUF_ASSERT(pos >= 0); GUF_ASSERT(count >= 0); if (str.len == 0 || count == 0 || pos >= str.len || str.str == NULL) { return (guf_str_view){.str = str.str, .len = 0}; } const ptrdiff_t substr_len = pos + count > str.len ? str.len - pos : count; GUF_ASSERT(substr_len >= 0); GUF_ASSERT(substr_len <= str.len); return (guf_str_view){.str = str.str + pos, .len = substr_len}; } GUF_STR_KWRDS guf_hash_size_t guf_str_view_hash(const guf_str_view *sv) { GUF_ASSERT(sv); if (!sv->str || sv->len <= 0) { return GUF_HASH_INIT; } return guf_hash(sv->str, sv->len, GUF_HASH_INIT); } GUF_STR_KWRDS uint64_t guf_str_view_hash64(const guf_str_view *sv) { GUF_ASSERT(sv); if (!sv->str || sv->len <= 0) { return GUF_HASH64_INIT; } return guf_hash64(sv->str, sv->len, GUF_HASH64_INIT); } GUF_STR_KWRDS uint32_t guf_str_view_hash32(const guf_str_view *sv) { GUF_ASSERT(sv); if (!sv->str || sv->len <= 0) { return GUF_HASH32_INIT; } return guf_hash32(sv->str, sv->len, GUF_HASH32_INIT); } GUF_STR_KWRDS bool guf_str_view_equal(const guf_str_view* a, const guf_str_view* b) { GUF_ASSERT(a && b); if (a->len != b->len) { return false; } if ((!a->str && b->str) || (!b->str && a->str)) { return false; } else if (!a->str && !b->str) { return a->len == b->len; } GUF_ASSERT(a->str && b->str); if (a->len <= 0) { return true; } return 0 == memcmp(a->str, b->str, a->len); } GUF_STR_KWRDS bool guf_str_view_equal_val_arg(guf_str_view a_val, guf_str_view b_val) { return guf_str_view_equal(&a_val, &b_val); } #undef GUF_STR_IMPL #undef GUF_STR_IMPL_STATIC #endif /* end impl */ #undef GUF_STR_KWRDS