/* is parametrized: no NOTE: automatically includes/implements guf_utf8.h */ #if defined(GUF_STR_IMPL_STATIC) #define GUF_STR_KWRDS static #else #define GUF_STR_KWRDS #endif #ifndef GUF_STR_H #define GUF_STR_H #include "guf_common.h" #include "guf_alloc.h" #include "guf_str_view_type.h" #include "guf_utf8.h" #include "guf_hash.h" // cf. libc++ short-string optimisation: https://joellaity.com/2020/01/31/string.html (last-retrieved 2025-03-10) typedef struct guf_str_internal_long_ { size_t capacity; // If long string: capacity's least significant bit always set to 1 (or its most significant bit for big-endian platforms); the actual capacity must be even size_t size; char *c_str; } guf_str_internal_long_; #define GUF_STR_SSO_BUF_CAP (sizeof(guf_str_internal_long_) - sizeof(unsigned char)) /* 23 bytes on 64-bit platforms, 11 bytes on 32-bit platforms */ #if defined(GUF_STDC_AT_LEAST_C11) || defined(GUF_STDCPP_AT_LEAST_CPP11) static_assert(GUF_STR_SSO_BUF_CAP > 0, "GUF_STR_SSO_BUF_CAP < 0 (this is very weird)"); // Basically cannot fail. static_assert(GUF_STR_SSO_BUF_CAP < 0x80, "GUF_STR_SSO_BUF_CAP >= 128 (no support for platforms with wordsize >= 512-bits)"); // Could fail on hypothetical platforms with 512-bit wordsize (and above). #endif typedef struct guf_str_internal_short_ { unsigned char size; // size overlaps with the first byte of guf_str_internal_long_.capacity [1] char c_str[GUF_STR_SSO_BUF_CAP]; } guf_str_internal_short_; /* [1] The first byte of guf_str_internal_long_.capacity is its least-significant-byte on little-endian platforms, and its most-significant byte on big-endian platforms. */ typedef struct guf_str { union { guf_str_internal_long_ lng; guf_str_internal_short_ shrt; } data; // 24 bytes on 64-bit platforms, 12 bytes on 32-bit platforms. guf_allocator *allocator; // Wasteful (8 bytes on 64-bit platforms...), but keeping this pointer also allows us to have "read-only strings" (a string is read-only if allocator == NULL) } guf_str; // Total: 32 bytes on 64-bit platforms, 16 bytes on 32-bit platforms. typedef enum guf_str_tok_delim_opt { GUF_STR_TOK_DELIM_OPT_MATCH_LONGEST = 0, GUF_STR_TOK_DELIM_OPT_MATCH_SHORTEST, GUF_STR_TOK_DELIM_OPT_MATCH_IN_ORDER, } guf_str_tok_delim_opt; typedef struct guf_str_tok_state { guf_str_view input; guf_str_view cur_tok, cur_delim; const guf_str_view *delims; const ptrdiff_t delim_count; ptrdiff_t num_toks_read, num_delims_read; bool done; } guf_str_tok_state; #define GUF_CSTR_TO_VIEW(CSTR) ((guf_str_view){.str = (CSTR), .len = (ptrdiff_t)strlen((CSTR))}) #define GUF_CSTR_LIT_TO_VIEW(CSTR) ((guf_str_view){.str = (CSTR), .len = (ptrdiff_t)sizeof((CSTR)) - 1}) #define GUF_STR_TO_VIEW(GUF_STR_PTR) ((guf_str_view){.str = guf_str_const_cstr((GUF_STR_PTR)), .len = (ptrdiff_t)guf_str_len((GUF_STR_PTR))}) #define GUF_CSTR_TO_READONLY_STR(CSTR) ((guf_str){.allocator = NULL, .data.lng.c_str = (CSTR), .data.lng.size = strlen(CSTR) + 1, .data.lng.capacity = 0}) #define GUF_STR_UNINITIALISED (guf_str){.allocator = NULL, .data.shrt.size = 0, .data.shrt.c_str[0] = '\0'} #ifdef __cplusplus // Standard C++ does not have compound literals like C99... #define GUF_CSTR_TO_VIEW_CPP(CSTR) guf_str_view {.str = (CSTR), .len = (ptrdiff_t)strlen(CSTR)} #define GUF_CSTR_LIT_TO_VIEW_CPP(CSTR) guf_str_view {.str = (CSTR), .len = (ptrdiff_t)sizeof(CSTR) - 1} #define GUF_STR_UNINITIALISED_CPP guf_str{.allocator = NULL, .data.shrt.size = 0, .data.shrt.c_str[0] = '\0'} #endif // 1.) guf_str_view: GUF_STR_KWRDS guf_str_view guf_str_view_from_str(const guf_str* str); // Return a new guf_str_view corresponding to the substring in range [pos, pos + count) of str GUF_STR_KWRDS guf_str_view guf_str_view_substr(guf_str_view str, ptrdiff_t pos, ptrdiff_t count); // Equality- and comparison-operators GUF_STR_KWRDS bool guf_str_view_equal(const guf_str_view* a, const guf_str_view* b); GUF_STR_KWRDS bool guf_str_view_equal_val_arg(guf_str_view a_val, guf_str_view b_val); GUF_STR_KWRDS int guf_str_view_cmp(const void *str_view_a, const void *str_view_b); // For qsort etc. // Hash functions. GUF_STR_KWRDS guf_hash_size_t guf_str_view_hash(const guf_str_view *sv); GUF_STR_KWRDS uint64_t guf_str_view_hash64(const guf_str_view *sv); GUF_STR_KWRDS uint32_t guf_str_view_hash32(const guf_str_view *sv); // Return a new guf_str_view corresponding to the substring with leading/trailing ascii-whitespace chars removed from the left/right GUF_STR_KWRDS guf_str_view guf_str_view_trim_left_ascii(guf_str_view sv); GUF_STR_KWRDS guf_str_view guf_str_view_trim_right_ascii(guf_str_view sv); // Return true if sv does not violate any of its invariants (.len must be >= 0, .str must not be NULL unless len is 0) GUF_STR_KWRDS bool guf_str_view_is_valid(guf_str_view sv); /* Return the substring up to the first delimiter "delim" and advance src to one past the delim (so the function can be called repeatedly) cf. "str_pop_first_split": - https://accu.org/conf-docs/PDFs_2021/luca_sass_modern_c_and_what_we_can_learn_from_it.pdf ("String handling in Modern C", page 128 of the pdf) - https://youtu.be/QpAhX-gsHMs?si=lCvm6o60LrYHaAHc&t=3059 (last-retrieved 2025-04-30) */ GUF_STR_KWRDS guf_str_view guf_str_view_pop_split(guf_str_view *src, guf_str_view delim); // Create a new tokeniser-state for guf_str_tok_next. GUF_STR_KWRDS guf_str_tok_state guf_str_tok_state_new(guf_str_view str, guf_str_view *delims, ptrdiff_t delim_count, guf_str_tok_delim_opt delim_match_opt); /* Return true when the next token (or delimiter if preserve_delims == true) was encountered. Put the current token into state->cur_tok. If preserve_delims is true, every delimiter will be put into state->cur_delim. If preserve_delims is false, delimiters will only be put into state->cur_delim if the current token is not empty (otherwise, empty tokens are skipped for preserve_delims == false). Example: delims = ["-", "+"] - "-1+2": tok_next(preserve_delims=false) will set state->cur_tok = "1" and state->cur_delim = "+" - "-1+2": tok_next(preserve_delims=true) will set state->cur_tok = "" and state->cur_delim = "-" Set preserve_delims to false if you don't care about processing the delimiters */ GUF_STR_KWRDS bool guf_str_tok_next(guf_str_tok_state *state, bool preserve_delims); // 2.) guf_str: // Initialise the guf_str pointed to by str -> return the initalised str on success (or NULL on error) GUF_STR_KWRDS guf_str *guf_str_try_init(guf_str *str, guf_str_view str_view, guf_allocator *alloc, guf_err *err); GUF_STR_KWRDS guf_str *guf_str_init(guf_str *str, guf_str_view str_view, guf_allocator *alloc); GUF_STR_KWRDS guf_str *guf_str_init_empty(guf_str *str, guf_allocator *alloc); GUF_STR_KWRDS guf_str *guf_str_try_init_from_cstr(guf_str *str, const char* c_str, guf_allocator *alloc, guf_err *err); GUF_STR_KWRDS guf_str *guf_str_init_from_cstr(guf_str *str, const char* c_str, guf_allocator *alloc); // Return an initialised guf_str (or GUF_STR_UNINITIALISED on error) GUF_STR_KWRDS guf_str guf_str_try_new(guf_str_view str_view, guf_allocator *alloc, guf_err *err); GUF_STR_KWRDS guf_str guf_str_new(guf_str_view str_view, guf_allocator *alloc); // Destructor, copy-constructor and move-constructor; equality- and comparison-operator (NOTE: ctx is ignored, just pass NULL) GUF_STR_KWRDS void guf_str_free(guf_str *str, void *ctx); GUF_STR_KWRDS guf_str *guf_str_copy(guf_str *dst, const guf_str *src, void *ctx); GUF_STR_KWRDS guf_str *guf_str_move(guf_str *dst, guf_str *src, void *ctx); GUF_STR_KWRDS bool guf_str_equal(const guf_str *a, const guf_str *b); GUF_STR_KWRDS int guf_str_cmp(const guf_str *a, const guf_str *b); // Hash-functions. GUF_STR_KWRDS guf_hash_size_t guf_str_hash(const guf_str *str); GUF_STR_KWRDS uint64_t guf_str_hash64(const guf_str *str); GUF_STR_KWRDS uint32_t guf_str_hash32(const guf_str *str); // Reserve at least min_capacity characters (excluding the null-terminator) (try to double the current capacity first; if that's not at least min_capacity, set the new capacity to min_capacity instead). GUF_STR_KWRDS guf_str *guf_str_try_reserve(guf_str *str, ptrdiff_t min_capacity, guf_err *err); GUF_STR_KWRDS guf_str *guf_str_reserve(guf_str *str, ptrdiff_t min_capacity); // Shrink the capacity of the string so it does not waste space (short-string-optimisation will be applied if the new capacity <= GUF_STR_SSO_BUF_CAP) GUF_STR_KWRDS guf_str *guf_str_try_shrink_to_fit(guf_str *str, guf_err *err); GUF_STR_KWRDS guf_str *guf_str_shrink_to_fit(guf_str *str); // Set the contents of str to the given string view (mutating str) -> return the mutated str GUF_STR_KWRDS guf_str *guf_str_try_set(guf_str *str, guf_str_view str_view, guf_err *err); GUF_STR_KWRDS guf_str *guf_str_set(guf_str *str, guf_str_view str_view); // Return a view of the string. GUF_STR_KWRDS guf_str_view guf_str_to_view(const guf_str *str); // Return a non-const pointer to the character at the specified index of str (if possible) GUF_STR_KWRDS char *guf_str_try_at(guf_str *str, ptrdiff_t idx, guf_err *err); GUF_STR_KWRDS char *guf_str_at(guf_str *str, ptrdiff_t idx); GUF_STR_KWRDS char *guf_str_try_back(guf_str *str, guf_err *err); GUF_STR_KWRDS char *guf_str_back(guf_str *str); GUF_STR_KWRDS char *guf_str_try_front(guf_str *str, guf_err *err); GUF_STR_KWRDS char *guf_str_front(guf_str *str); // Return a copy of the char at the specified index of str (if possible) GUF_STR_KWRDS char guf_str_try_at_cpy(const guf_str *str, ptrdiff_t idx, guf_err *err); GUF_STR_KWRDS char guf_str_at_cpy(const guf_str *str, ptrdiff_t idx); GUF_STR_KWRDS char guf_str_try_back_cpy(const guf_str *str, guf_err *err); GUF_STR_KWRDS char guf_str_back_cpy(const guf_str *str); GUF_STR_KWRDS char guf_str_try_front_cpy(const guf_str *str, guf_err *err); GUF_STR_KWRDS char guf_str_front_cpy(const guf_str *str); /* Turn str into the substring in range [pos, pos + count) (mutating str) -> return the mutated str (Constant time if pos == 0, otherwise copying count chars to the beginning of the str, i.e. linear time.) NOTE: To make a substring-copy (instead of mutating str), create a guf_str_view of str and use guf_str_view_substr */ GUF_STR_KWRDS guf_str *guf_str_try_substr(guf_str *str, ptrdiff_t pos, ptrdiff_t count, guf_err *err); GUF_STR_KWRDS guf_str *guf_str_substr(guf_str *str, ptrdiff_t pos, ptrdiff_t count); // Remove the last character from str if possible (mutating str) -> return the popped char GUF_STR_KWRDS char guf_str_try_pop_back(guf_str *str, guf_err *err); GUF_STR_KWRDS char guf_str_pop_back(guf_str *str); // Append a char to str (n times; times must be >= 0) (mutating str) -> return the mutated str GUF_STR_KWRDS guf_str *guf_str_try_append_char(guf_str *str, char c, ptrdiff_t times, guf_err *err); GUF_STR_KWRDS guf_str *guf_str_append_char(guf_str *str, char c, ptrdiff_t times); GUF_STR_KWRDS guf_str *guf_str_try_append_one_char(guf_str *str, char c, guf_err *err); GUF_STR_KWRDS guf_str *guf_str_append_one_char(guf_str *str, char c); // Append str_view to str (mutating str) -> return the mutated str GUF_STR_KWRDS guf_str *guf_str_try_append(guf_str *str, guf_str_view sv, guf_err *err); GUF_STR_KWRDS guf_str *guf_str_append(guf_str *str, guf_str_view sv); // Return a pointer to the null-terminated char array representing the string (works like std::string::c_str in C++) GUF_STR_KWRDS const char *guf_str_const_cstr(const guf_str *str); GUF_STR_KWRDS char *guf_str_try_get_cstr(guf_str *str, guf_err *err); // Error if str is readonly. GUF_STR_KWRDS char *guf_str_cstr(guf_str *str); // Panics if str is readonly. // Return the length/capacity (in chars) *without* the final null-terminator. GUF_STR_KWRDS ptrdiff_t guf_str_len(const guf_str *str); GUF_STR_KWRDS ptrdiff_t guf_str_capacity(const guf_str *str); // Return true if the char data of the string lives directly within the guf_str itself (short-string optimisation) instead of in a separate dynamic allocation GUF_STR_KWRDS bool guf_str_is_short(const guf_str *str); // Return true if the string is in readonly ("view") mode, i.e. can't be modified, copied etc. which is useful for guf_dict so we don't have to use guf_str_view but can use guf_str (by passing a read-only guf_str) for the lookup functions. GUF_STR_KWRDS bool guf_str_is_readonly(const guf_str *str); // Return an guf_str which is in explicitly uninitialised state. GUF_STR_KWRDS guf_str guf_str_new_uninitialised(void); // Return true if str is explicitly uninitialised. GUF_STR_KWRDS bool guf_str_is_uninit(const guf_str *str); // Return true if the string's data does not violate its invariants (useful for debugging the library, should never be false after initialising a guf_str). GUF_STR_KWRDS bool guf_str_is_valid(const guf_str *str); #endif // #define GUF_STR_IMPL_STATIC /* debug */ #if defined(GUF_STR_IMPL) || defined(GUF_STR_IMPL_STATIC) #ifdef __cplusplus #error "Must compile guf_str as C99 (or above) because type-punning with unions is undefined behaviour in C++" #endif #include "guf_common.h" #include "guf_math.h" #define GUF_MATH_CKDINT_IMPL_STATIC #include "guf_math_ckdint.h" #include #ifdef GUF_STR_IMPL #define GUF_UTF8_IMPL #else #define GUF_UTF8_IMPL_STATIC #endif #include "guf_utf8.h" // TODO: find_first_of // guf_str: #if defined(GUF_PLATFORM_LITTLE_ENDIAN) #define GUF_STR_IS_LONG_MASK ((unsigned char)1) /* binary 0000.0001 */ #define GUF_STR_GET_CAP_MASK (~(size_t)1) /* binary 1111.1111 (1111.1111)* 1111.1110 */ static inline void guf_str_set_lng_cap_(guf_str *str, size_t cap_with_null) { GUF_ASSERT(cap_with_null % 2 == 0); GUF_ASSERT(cap_with_null <= PTRDIFF_MAX); GUF_ASSERT(cap_with_null > GUF_STR_SSO_BUF_CAP); str->data.lng.capacity = cap_with_null | ((size_t)1); } static inline void guf_str_set_shrt_size_(guf_str *str, unsigned char size_with_null) { GUF_ASSERT(size_with_null <= GUF_STR_SSO_BUF_CAP && size_with_null < 0x80); // TODO: was < SSO_CAP, should be <= SSO_CAP? str->data.shrt.size = (unsigned char)(size_with_null << 1); } #elif defined(GUF_PLATFORM_BIG_ENDIAN) #define GUF_STR_IS_LONG_MASK ((unsigned char)0x80) /* binary 1000 0000 */ #define GUF_STR_GET_CAP_MASK ((size_t)SIZE_MAX >> 1u) /* binary 0111.1111 (1111.1111)* 1111.1111 */ static inline void guf_str_set_lng_cap_(guf_str *str, size_t cap_with_null) { GUF_ASSERT(cap_with_null % 2 == 0); GUF_ASSERT(cap_with_null <= PTRDIFF_MAX); GUF_ASSERT(cap_with_null > GUF_STR_SSO_BUF_CAP); str->data.lng.capacity = ~GUF_STR_GET_CAP_MASK | (cap_with_null >> 1); } static inline void guf_str_set_shrt_size_(guf_str *str, unsigned char size_with_null) { GUF_ASSERT(size_with_null <= GUF_STR_SSO_BUF_CAP && size_with_null < 0x80); // TODO: was < SSO_CAP, should be <= str->data.shrt.size = size_with_null; } #else #error "guf_str: neither GUF_PLATFORM_LITTLE_ENDIAN nor GUF_PLATFORM_BIG_ENDIAN is defined" #endif GUF_STR_KWRDS bool guf_str_is_readonly(const guf_str *str) { GUF_ASSERT(str); return !str->allocator; } static bool guf_str_is_short_internal_(const guf_str *str) { if (guf_str_is_readonly(str)) { return false; } const unsigned char first_byte = str->data.shrt.size; // union type-punning (only legal in C99 and above; undefined behaviour in C++ I think). return (first_byte & GUF_STR_IS_LONG_MASK) == 0; } // Returns the capacity without the final null-terminator static size_t guf_str_cap_internal_(const guf_str *str) { if (guf_str_is_short_internal_(str)) { return GUF_STR_SSO_BUF_CAP - 1; } else if (guf_str_is_readonly(str)) { return 0; } else { // Precondition: all capacities for data.lng must be even. #if defined(GUF_PLATFORM_LITTLE_ENDIAN) GUF_ASSERT(str->data.lng.capacity & ~GUF_STR_GET_CAP_MASK); // Assert the is_long bit is actually set. const size_t cap_with_null = str->data.lng.capacity & GUF_STR_GET_CAP_MASK; GUF_ASSERT(cap_with_null % 2 == 0); #elif defined(GUF_PLATFORM_BIG_ENDIAN) GUF_ASSERT(str->data.lng.capacity & ~GUF_STR_GET_CAP_MASK); // Assert the is_long bit is actually set. const size_t cap_with_null = (str->data.lng.capacity & GUF_STR_GET_CAP_MASK) << 1; GUF_ASSERT(cap_with_null % 2 == 0); #endif GUF_ASSERT(cap_with_null > 0 && cap_with_null > GUF_STR_SSO_BUF_CAP); GUF_ASSERT(cap_with_null <= PTRDIFF_MAX); return cap_with_null - 1; } } static size_t guf_str_size_internal_(const guf_str *str) { if (guf_str_is_short_internal_(str)) { GUF_ASSERT(str->data.shrt.size > 0); #if defined(GUF_PLATFORM_LITTLE_ENDIAN) const size_t size = (str->data.shrt.size >> 1); #elif defined(GUF_PLATFORM_BIG_ENDIAN) const size_t size = (str->data.shrt.size); #endif GUF_ASSERT(size > 0 && size <= GUF_STR_SSO_BUF_CAP); return size; } else { const size_t size = str->data.lng.size; GUF_ASSERT(size > 0 && size <= PTRDIFF_MAX); return size; } } static size_t guf_str_len_internal_(const guf_str *str) { const size_t size = guf_str_size_internal_(str); GUF_ASSERT(size > 0); if (size == 0) { return 0; } else { return size - 1; } } GUF_STR_KWRDS bool guf_str_is_short(const guf_str *str) { GUF_ASSERT(guf_str_is_valid(str)); return guf_str_is_short_internal_(str); } GUF_STR_KWRDS ptrdiff_t guf_str_capacity(const guf_str *str) { GUF_ASSERT(guf_str_is_valid(str)); return (ptrdiff_t)guf_str_cap_internal_(str); } GUF_STR_KWRDS ptrdiff_t guf_str_len(const guf_str *str) { GUF_ASSERT(guf_str_is_valid(str)); return (ptrdiff_t)guf_str_len_internal_(str); } GUF_STR_KWRDS bool guf_str_is_valid(const guf_str *str) { GUF_ASSERT(str); if (!str || guf_str_is_uninit(str)) { return false; } const bool is_readonly = !str->allocator; if (is_readonly) { bool valid_readonly = str->data.lng.c_str && str->data.lng.capacity == 0 && str->data.lng.size > 0; return valid_readonly; } const bool valid_allocator = str->allocator && str->allocator->alloc && str->allocator->free && str->allocator->realloc; if (!valid_allocator) { return false; } if (guf_str_is_short_internal_(str)) { const size_t size = guf_str_size_internal_(str); // len + 1 return size > 0 && size <= GUF_STR_SSO_BUF_CAP && str->data.shrt.c_str[size - 1] == '\0'; } else { const size_t cap_with_null = guf_str_cap_internal_(str) + 1; const size_t size = guf_str_size_internal_(str); // len + 1 const bool valid_cap = cap_with_null > GUF_STR_SSO_BUF_CAP && cap_with_null <= PTRDIFF_MAX && (cap_with_null % 2 == 0); return valid_cap && size >= 1 && str->data.lng.c_str && str->data.lng.size > 0 && str->data.lng.size <= cap_with_null && str->data.lng.c_str[size - 1] == '\0'; } } GUF_STR_KWRDS guf_str *guf_str_try_reserve(guf_str *str, ptrdiff_t new_cap_min, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); if (guf_str_is_readonly(str)) { guf_err_set_or_panic(err, GUF_ERR_INVALID_ARG, GUF_ERR_MSG("in guf_str_try_reserve: guf_str is readonly")); return NULL; } const size_t old_cap_with_null = guf_str_cap_internal_(str) + 1; const size_t len_with_null = guf_str_len_internal_(str) + 1; if (new_cap_min < (ptrdiff_t)old_cap_with_null) { // No need to grow. TODO: was <=, should be < ? guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } if (new_cap_min >= PTRDIFF_MAX - 1) { guf_err_set_or_panic(err, GUF_ERR_INT_OVERFLOW, GUF_ERR_MSG("in guf_str_try_reserve: new_cap_min >= PTRDIFF_MAX - 1")); return NULL; } size_t new_cap_min_with_null = (size_t)new_cap_min + 1; if (new_cap_min_with_null % 2 != 0) { // Only an even lng.capacity is allowed. new_cap_min_with_null += 1; } // Try if we can reach at least new_cap_min_with_null by doubling the capacity. const size_t GUF_STR_GROWTH_FAC = 2; size_t times_two_cap = old_cap_with_null * GUF_STR_GROWTH_FAC; if (guf_mul_is_overflow_size_t(old_cap_with_null, GUF_STR_GROWTH_FAC) || times_two_cap >= PTRDIFF_MAX) { times_two_cap = (PTRDIFF_MAX % 2 == 0) ? PTRDIFF_MAX : PTRDIFF_MAX - 1; } if (times_two_cap > new_cap_min_with_null) { new_cap_min_with_null = times_two_cap; } GUF_ASSERT(new_cap_min_with_null > len_with_null && new_cap_min_with_null <= PTRDIFF_MAX); const size_t space_remaining = (new_cap_min_with_null - len_with_null); if (new_cap_min_with_null < (PTRDIFF_MAX - 8) && space_remaining < 4) { new_cap_min_with_null += 4 - space_remaining; // Have some leeway. } GUF_ASSERT(new_cap_min_with_null % 2 == 0); if (guf_str_is_short_internal_(str)) { // a.) Was short string -> need initial allocation. char *c_str_new = str->allocator->alloc(new_cap_min_with_null, str->allocator->ctx); if (!c_str_new) { guf_err_set_or_panic(err, GUF_ERR_ALLOC_FAIL, GUF_ERR_MSG("in guf_str_try_reserve: Initial allocation failed.")); return NULL; } memcpy(c_str_new, str->data.shrt.c_str, len_with_null); str->data.lng.c_str = c_str_new; str->data.lng.size = len_with_null; guf_str_set_lng_cap_(str, new_cap_min_with_null); } else { // b) Was long string -> need re-allocation char *c_str_new = str->allocator->realloc(str->data.lng.c_str, old_cap_with_null, new_cap_min_with_null, str->allocator->ctx); if (!c_str_new) { guf_err_set_or_panic(err, GUF_ERR_ALLOC_FAIL, GUF_ERR_MSG("in guf_str_try_reserve: re-allocation failed.")); return NULL; } str->data.lng.c_str = c_str_new; guf_str_set_lng_cap_(str, new_cap_min_with_null); } GUF_ASSERT(guf_str_is_valid(str)); guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } GUF_STR_KWRDS guf_str *guf_str_reserve(guf_str *str, ptrdiff_t new_cap_min) { return guf_str_try_reserve(str, new_cap_min, NULL); } GUF_STR_KWRDS guf_str *guf_str_try_shrink_to_fit(guf_str *str, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); if (guf_str_is_readonly(str)) { guf_err_set_or_panic(err, GUF_ERR_INVALID_ARG, GUF_ERR_MSG("in guf_str_try_shrink_to_fit: guf_str is readonly")); return NULL; } const size_t old_cap_with_null = guf_str_cap_internal_(str) + 1; const size_t len_with_null = guf_str_len_internal_(str) + 1; GUF_ASSERT(len_with_null <= old_cap_with_null); if (old_cap_with_null == len_with_null || guf_str_is_short_internal_(str)) { guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } char *c_str_old = guf_str_cstr(str); GUF_ASSERT(c_str_old); if (len_with_null <= GUF_STR_SSO_BUF_CAP) { // a) Shrunk size fits into short.string. GUF_ASSERT(len_with_null <= UCHAR_MAX) guf_str_set_shrt_size_(str, (unsigned char)len_with_null); memcpy(str->data.shrt.c_str, c_str_old, len_with_null); str->allocator->free(c_str_old, old_cap_with_null, str->allocator->ctx); GUF_ASSERT(guf_str_is_short(str)); GUF_ASSERT(guf_str_is_valid(str)); guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } // b) Shrunk size does not fit into short-string. char *c_str_new = str->allocator->realloc(c_str_old, old_cap_with_null, len_with_null, str->allocator->ctx); if (!c_str_new) { guf_err_set_or_panic(err, GUF_ERR_ALLOC_FAIL, GUF_ERR_MSG("in guf_str_try_shrink_to_fit: realloc failed")); return NULL; } else { str->data.lng.c_str = c_str_new; guf_str_set_lng_cap_(str, len_with_null); GUF_ASSERT(!guf_str_is_short(str)); GUF_ASSERT(guf_str_is_valid(str)); guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } } GUF_STR_KWRDS guf_str *guf_str_shrink_to_fit(guf_str *str) { return guf_str_try_shrink_to_fit(str, NULL); } static char *guf_str_get_cstr_internal_(guf_str *str) { if (guf_str_is_short_internal_(str)) { return str->data.shrt.c_str; } else { return str->data.lng.c_str; } } static const char *guf_str_get_const_cstr_internal_(const guf_str *str) { if (guf_str_is_short(str)) { return str->data.shrt.c_str; } else { return str->data.lng.c_str; } } GUF_STR_KWRDS const char *guf_str_const_cstr(const guf_str *str) { GUF_ASSERT(guf_str_is_valid(str)); const char* c_str = guf_str_get_const_cstr_internal_(str); GUF_ASSERT(c_str); return c_str; } GUF_STR_KWRDS char *guf_str_try_get_cstr(guf_str *str, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); if (guf_str_is_readonly(str)) { guf_err_set_or_panic(err, GUF_ERR_INVALID_ARG, GUF_ERR_MSG("in guf_str_try_get_cstr: cannot return non-const char pointer because str is readonly")); return NULL; } char *c_str = guf_str_get_cstr_internal_(str); GUF_ASSERT(c_str); guf_err_set_if_not_null(err, GUF_ERR_NONE); return c_str; } GUF_STR_KWRDS char *guf_str_cstr(guf_str *str) { return guf_str_try_get_cstr(str, NULL); } static void guf_str_set_len_internal_(guf_str *str, size_t len) { GUF_ASSERT(len <= guf_str_cap_internal_(str)); GUF_ASSERT(!guf_str_is_readonly(str)); const size_t len_with_null = len + 1; if (guf_str_is_short_internal_(str)) { GUF_ASSERT(len_with_null <= UCHAR_MAX) guf_str_set_shrt_size_(str, (unsigned char)len_with_null); } else { str->data.lng.size = len_with_null; } } GUF_STR_KWRDS guf_str guf_str_new_uninitialised(void) { return GUF_STR_UNINITIALISED; } GUF_STR_KWRDS bool guf_str_is_uninit(const guf_str *str) { GUF_ASSERT(str); return !str->allocator && !str->data.shrt.size && str->data.shrt.c_str[0] == '\0'; } GUF_STR_KWRDS guf_str *guf_str_init_empty(guf_str *str, guf_allocator *allocator) { GUF_ASSERT_RELEASE(str && allocator); GUF_ASSERT_RELEASE(allocator->alloc && allocator->realloc && allocator->free); str->allocator = allocator; guf_str_set_shrt_size_(str, 1); str->data.shrt.c_str[0] = '\0'; GUF_ASSERT(guf_str_is_valid(str)); return str; } GUF_STR_KWRDS guf_str *guf_str_try_init(guf_str *str, guf_str_view str_view, guf_allocator *alloc, guf_err *err) { if (!str) { guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, GUF_ERR_MSG("in guf_str_try_init: str is NULL")); return NULL; } else if (!alloc || !alloc->alloc || !alloc->realloc || !alloc->free) { guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, GUF_ERR_MSG("in guf_str_try_init: alloc (or allocs function pointers) is/are NULL")); return NULL; } if (!guf_str_view_is_valid(str_view)) { guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, GUF_ERR_MSG("in guf_str_try_init: invalid str_view")); return NULL; } guf_str_init_empty(str, alloc); if (str_view.len == 0) { GUF_ASSERT(!guf_str_is_readonly(str)); GUF_ASSERT(guf_str_is_valid(str)); guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } GUF_ASSERT(str_view.str && str_view.len > 0); guf_str_try_reserve(str, str_view.len, err); GUF_ASSERT(guf_str_is_valid(str)); if (err && *err != GUF_ERR_NONE) { guf_panic(*err, GUF_ERR_MSG("in guf_str_try_init: Initial allocation failed")); return NULL; } GUF_ASSERT(guf_str_len_internal_(str) == 0); GUF_ASSERT(guf_str_cap_internal_(str) >= (size_t)str_view.len); GUF_ASSERT(!guf_str_is_readonly(str)); char *c_str_dst = guf_str_get_cstr_internal_(str); GUF_ASSERT(c_str_dst); memcpy(c_str_dst, str_view.str, str_view.len); c_str_dst[str_view.len] = '\0'; guf_str_set_len_internal_(str, str_view.len); GUF_ASSERT(!guf_str_is_readonly(str)); GUF_ASSERT(guf_str_is_valid(str)); guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } GUF_STR_KWRDS guf_str *guf_str_init(guf_str *str, guf_str_view str_view, guf_allocator *alloc) { return guf_str_try_init(str, str_view, alloc, NULL); } GUF_STR_KWRDS guf_str guf_str_try_new(guf_str_view str_view, guf_allocator *alloc, guf_err *err) { guf_str str = guf_str_new_uninitialised(); guf_str_try_init(&str, str_view, alloc, err); if (err && *err != GUF_ERR_NONE) { guf_err_set_or_panic(err, *err, GUF_ERR_MSG("in guf_str_try_new: failed init")); return guf_str_new_uninitialised(); } else { GUF_ASSERT(!guf_str_is_uninit(&str)); guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } } GUF_STR_KWRDS guf_str guf_str_new(guf_str_view str_view, guf_allocator *alloc) { return guf_str_try_new(str_view, alloc, NULL); } GUF_STR_KWRDS guf_str *guf_str_try_init_from_cstr(guf_str *str, const char* c_str, guf_allocator *alloc, guf_err *err) { GUF_ASSERT(str); if (!str) { guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, GUF_ERR_MSG("in guf_str_try_init_from_cstr: str is NULL")); return NULL; } else if (!c_str) { guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, GUF_ERR_MSG("in guf_str_try_init_from_cstr: c_str is NULL")); return NULL; } else if (!alloc || !alloc->alloc || !alloc->realloc || !alloc->free) { guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, GUF_ERR_MSG("in guf_str_try_init_from_cstr: alloc (or allocs function pointers) is/are NULL")); return NULL; } const size_t len = strlen(c_str); if (len >= PTRDIFF_MAX) { guf_err_set_or_panic(err, GUF_ERR_INT_OVERFLOW, GUF_ERR_MSG("in guf_str_try_init_from_cstr: stlen(c_str) >= PTRDIFF_MAX")); return NULL; } guf_str_try_init(str, (guf_str_view){.str = c_str, .len = (ptrdiff_t)len}, alloc, err); if (err && *err != GUF_ERR_NONE) { guf_err_set_or_panic(err, *err, GUF_ERR_MSG("in guf_str_try_init_from_cstr: guf_str_try_init failed")); return NULL; } else { guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } } GUF_STR_KWRDS guf_str *guf_str_init_from_cstr(guf_str *str, const char* c_str, guf_allocator *alloc) { return guf_str_try_init_from_cstr(str, c_str, alloc, NULL); } GUF_STR_KWRDS guf_str_view guf_str_to_view(const guf_str *str) { GUF_ASSERT(guf_str_is_valid(str)); guf_str_view sv = { .str = guf_str_const_cstr(str), .len = guf_str_len(str) }; GUF_ASSERT(guf_str_view_is_valid(sv)); return sv; } GUF_STR_KWRDS char *guf_str_try_at(guf_str *str, ptrdiff_t idx, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); const ptrdiff_t len = guf_str_len(str); if (idx < 0) { guf_err_set_or_panic(err, GUF_ERR_IDX_RANGE, GUF_ERR_MSG("in guf_str_try_at: idx < 0")); return NULL; } else if (idx >= len) { guf_err_set_or_panic(err, GUF_ERR_IDX_RANGE, GUF_ERR_MSG("in guf_str_try_at: idx out of range (idx >= len)")); return NULL; } else { char *c_str = guf_str_try_get_cstr(str, err); if (err && *err != GUF_ERR_NONE) { guf_err_set_or_panic(err, *err, GUF_ERR_MSG("in guf_str_try_at: guf_str_try_get_cstr failed (guf_str is readonly)")); return NULL; } GUF_ASSERT(c_str); guf_err_set_if_not_null(err, GUF_ERR_NONE); return c_str + idx; } } GUF_STR_KWRDS char *guf_str_at(guf_str *str, ptrdiff_t idx) { return guf_str_try_at(str, idx, NULL); } GUF_STR_KWRDS char *guf_str_try_back(guf_str *str, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); const ptrdiff_t len = guf_str_len(str); if (len == 0) { guf_err_set_or_panic(err, GUF_ERR_IDX_RANGE, GUF_ERR_MSG("in guf_str_try_back: len == 0")); return NULL; } else { guf_err_set_if_not_null(err, GUF_ERR_NONE); return guf_str_try_at(str, len - 1, err); } } GUF_STR_KWRDS char *guf_str_back(guf_str *str) { return guf_str_try_back(str, NULL); } GUF_STR_KWRDS char *guf_str_try_front(guf_str *str, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); const ptrdiff_t len = guf_str_len(str); if (len == 0) { guf_err_set_or_panic(err, GUF_ERR_IDX_RANGE, GUF_ERR_MSG("in guf_str_try_front: len == 0")); return NULL; } else { guf_err_set_if_not_null(err, GUF_ERR_NONE); return guf_str_try_at(str, 0, err); } } GUF_STR_KWRDS char *guf_str_front(guf_str *str) { return guf_str_try_front(str, NULL); } GUF_STR_KWRDS char guf_str_try_at_cpy(const guf_str *str, ptrdiff_t idx, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); const ptrdiff_t len = guf_str_len(str); if (idx < 0) { guf_err_set_or_panic(err, GUF_ERR_IDX_RANGE, GUF_ERR_MSG("in guf_str_try_at_cpy: idx < 0")); return '\0'; } else if (idx >= len) { guf_err_set_or_panic(err, GUF_ERR_IDX_RANGE, GUF_ERR_MSG("in guf_str_try_at_cpy: idx out of range (idx >= len)")); return '\0'; } else { const char *c_str = guf_str_const_cstr(str); GUF_ASSERT(c_str); guf_err_set_if_not_null(err, GUF_ERR_NONE); return c_str[idx]; } } GUF_STR_KWRDS char guf_str_at_cpy(const guf_str *str, ptrdiff_t idx) { return guf_str_try_at_cpy(str, idx, NULL); } GUF_STR_KWRDS char guf_str_try_back_cpy(const guf_str *str, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); const ptrdiff_t len = guf_str_len(str); if (len == 0) { guf_err_set_or_panic(err, GUF_ERR_IDX_RANGE, GUF_ERR_MSG("in guf_str_try_back_cpy: len == 0")); return '\0'; } else { guf_err_set_if_not_null(err, GUF_ERR_NONE); return guf_str_try_at_cpy(str, len - 1, err); } } GUF_STR_KWRDS char guf_str_back_cpy(const guf_str *str) { return guf_str_try_back_cpy(str, NULL); } GUF_STR_KWRDS char guf_str_try_front_cpy(const guf_str *str, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); const ptrdiff_t len = guf_str_len(str); if (len == 0) { guf_err_set_or_panic(err, GUF_ERR_IDX_RANGE, GUF_ERR_MSG("in guf_str_try_front_cpy: len == 0")); return '\0'; } else { guf_err_set_if_not_null(err, GUF_ERR_NONE); return guf_str_try_at_cpy(str, 0, err); } } GUF_STR_KWRDS char guf_str_front_cpy(const guf_str *str) { return guf_str_try_front_cpy(str, NULL); } GUF_STR_KWRDS void guf_str_free(guf_str *str, void *ctx) { (void)ctx; if (!str || guf_str_is_uninit(str)) { return; } else if (guf_str_is_readonly(str)) { // Don't need to de-allocate anything for read-only strings. *str = guf_str_new_uninitialised(); return; } else if (!guf_str_is_short(str)) { // Need to de-allocate. GUF_ASSERT(guf_str_capacity(str) < PTRDIFF_MAX); const ptrdiff_t cap_with_null = guf_str_capacity(str) + 1; GUF_ASSERT((cap_with_null % 2) == 0); char *c_str = guf_str_cstr(str); GUF_ASSERT(str->allocator->free); if (str->allocator->free) { str->allocator->free(c_str, cap_with_null, str->allocator->ctx); } *str = guf_str_new_uninitialised(); return; } else { GUF_ASSERT(guf_str_is_short(str)); *str = guf_str_new_uninitialised(); } } GUF_STR_KWRDS guf_str *guf_str_copy(guf_str *dst, const guf_str *src, void *ctx) { (void)ctx; GUF_ASSERT_RELEASE(dst); GUF_ASSERT_RELEASE(guf_str_is_valid(src)); GUF_ASSERT_RELEASE(!guf_str_is_readonly(src)); // // Doesn't make sense to deep-cpy in readonly mode (I think). guf_str_init_empty(dst, src->allocator); GUF_ASSERT(guf_str_is_short_internal_(dst)); char *dst_cstr = NULL; if (!guf_str_is_short_internal_(src)) { const size_t src_cap_with_null = guf_str_cap_internal_(src) + 1; dst_cstr = src->allocator->alloc(src_cap_with_null, src->allocator->ctx); if (!dst_cstr) { *dst = guf_str_new_uninitialised(); return NULL; } dst->data.lng.c_str = dst_cstr; dst->data.lng.capacity = src->data.lng.capacity; dst->data.lng.size = src->data.lng.size; } else { dst->data.shrt.size = src->data.shrt.size; dst_cstr = dst->data.shrt.c_str; } GUF_ASSERT(dst_cstr); const size_t src_len_with_null = guf_str_len_internal_(src) + 1; GUF_ASSERT(src_len_with_null == (guf_str_len_internal_(dst) + 1)); GUF_ASSERT(guf_str_is_short_internal_(dst) == guf_str_is_short_internal_(src)); const char *src_cstr = guf_str_const_cstr(src); GUF_ASSERT(src_cstr); memcpy(dst_cstr, src_cstr, src_len_with_null); GUF_ASSERT(guf_str_is_valid(dst)); return dst; } GUF_STR_KWRDS guf_str *guf_str_move(guf_str *dst, guf_str *src, void *ctx) { (void)ctx; GUF_ASSERT_RELEASE(dst); GUF_ASSERT_RELEASE(guf_str_is_valid(src)); GUF_ASSERT_RELEASE(!guf_str_is_readonly(src)); // Doesn't make sense to move in readonly mode (I think). *dst = *src; *src = guf_str_new_uninitialised(); return dst; } GUF_STR_KWRDS bool guf_str_equal(const guf_str *a, const guf_str *b) { GUF_ASSERT_RELEASE(guf_str_is_valid(a) && guf_str_is_valid(b)); if (guf_str_len(a) != guf_str_len(b)) { return false; } const char *a_cstr = guf_str_const_cstr(a); const char *b_cstr = guf_str_const_cstr(b); GUF_ASSERT(a_cstr && b_cstr); return 0 == memcmp(a_cstr, b_cstr, guf_str_len(a)); } GUF_STR_KWRDS int guf_str_cmp(const guf_str *a, const guf_str *b) { GUF_ASSERT_RELEASE(guf_str_is_valid(a) && guf_str_is_valid(b)); GUF_ASSERT_RELEASE(guf_str_is_valid(a) && guf_str_is_valid(b)); const ptrdiff_t shorter_len = guf_min_ptrdiff_t(guf_str_len(a), guf_str_len(b)); const char *a_cstr = guf_str_const_cstr(a); const char *b_cstr = guf_str_const_cstr(b); GUF_ASSERT(a_cstr && b_cstr); return memcmp(a_cstr, b_cstr, shorter_len); } GUF_STR_KWRDS guf_str *guf_str_try_set(guf_str *str, guf_str_view sv, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); if (guf_str_is_readonly(str)) { guf_err_set_or_panic(err, GUF_ERR_INVALID_ARG, GUF_ERR_MSG("in guf_str_try_set: guf_str is readonly")); return NULL; } else if (!guf_str_view_is_valid(sv)) { guf_err_set_or_panic(err, GUF_ERR_INVALID_ARG, GUF_ERR_MSG("in guf_str_try_set: str_view is invalid")); return NULL; } guf_str_try_reserve(str, sv.len, err); if (err && *err != GUF_ERR_NONE) { guf_err_set_or_panic(err, *err, GUF_ERR_MSG("in guf_str_try_set: guf_str_try_reserve failed")); return NULL; } char *c_str_dst = guf_str_cstr(str); GUF_ASSERT(c_str_dst); if (sv.len > 0) { GUF_ASSERT(sv.str); memcpy(c_str_dst, sv.str, sv.len); } c_str_dst[sv.len] = '\0'; guf_str_set_len_internal_(str, sv.len); GUF_ASSERT(guf_str_is_valid(str)); guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } GUF_STR_KWRDS guf_str *guf_str_set(guf_str *str, guf_str_view sv) { return guf_str_try_set(str, sv, NULL); } GUF_STR_KWRDS guf_str *guf_str_try_append_char(guf_str *str, char c, ptrdiff_t times, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); if (guf_str_is_readonly(str)) { guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, GUF_ERR_MSG("in guf_str_try_append_char: str is readonly")); return NULL; } if (times < 0) { guf_err_set_or_panic(err, GUF_ERR_INVALID_ARG, GUF_ERR_MSG("in guf_str_try_append_char: repeats < 0")); return NULL; } else if (times == 0) { guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } GUF_ASSERT(guf_str_len_internal_(str) <= guf_str_cap_internal_(str)); const size_t old_cap = guf_str_cap_internal_(str); const size_t old_len = guf_str_len_internal_(str); const size_t new_len = old_len + (size_t)times; if (new_len <= old_len || new_len >= (size_t)PTRDIFF_MAX) { // Handle overflow. guf_err_set_or_panic(err, GUF_ERR_INT_OVERFLOW, GUF_ERR_MSG("in guf_str_try_append_char: new length would overflow ptrdiff_t")); return NULL; } else if (new_len > old_cap) { // Need to grow capacity. guf_str_try_reserve(str, new_len, err); if (err && *err != GUF_ERR_NONE) { guf_err_set_or_panic(err, *err, GUF_ERR_MSG("in guf_str_try_append_char: failed to reserve capacity")); return NULL; } } const size_t new_cap = guf_str_cap_internal_(str); GUF_ASSERT_RELEASE(new_cap >= new_len && new_cap >= old_cap); GUF_ASSERT(guf_str_len_internal_(str) == old_len); GUF_ASSERT(((ptrdiff_t)new_cap - (ptrdiff_t)old_len) >= times); char *c_str = guf_str_get_cstr_internal_(str); for (size_t i = old_len; i < new_len; ++i) { c_str[i] = c; } guf_str_set_len_internal_(str, new_len); c_str[new_len] = '\0'; guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } GUF_STR_KWRDS guf_str *guf_str_append_char(guf_str *str, char c, ptrdiff_t times) { return guf_str_try_append_char(str, c, times, NULL); } GUF_STR_KWRDS guf_str *guf_str_try_append_one_char(guf_str *str, char c, guf_err *err) { return guf_str_try_append_char(str, c, 1, err); } GUF_STR_KWRDS guf_str *guf_str_append_one_char(guf_str *str, char c) { return guf_str_try_append_one_char(str, c, NULL); } GUF_STR_KWRDS guf_str *guf_str_try_append(guf_str *str, guf_str_view sv, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); if (!guf_str_view_is_valid(sv)) { guf_err_set_or_panic(err, GUF_ERR_INVALID_ARG, GUF_ERR_MSG("in guf_str_try_append_view: str_view is invalid")); return NULL; } else if (guf_str_is_readonly(str)) { guf_err_set_or_panic(err, GUF_ERR_NULL_PTR, GUF_ERR_MSG("in in guf_str_try_append_view: str is readonly")); return NULL; } if (sv.len == 0) { guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } GUF_ASSERT(sv.str && sv.len > 0); const size_t old_cap = guf_str_cap_internal_(str); const size_t old_len = guf_str_len_internal_(str); const size_t new_len = old_len + (size_t)sv.len; if (new_len <= old_len || new_len >= (size_t)PTRDIFF_MAX) { // Handle overflow. guf_err_set_or_panic(err, GUF_ERR_INT_OVERFLOW, GUF_ERR_MSG("in guf_str_try_append_view: new length would overflow ptrdiff_t")); return NULL; } else if (new_len > old_cap) { // Growth necessary. guf_str_try_reserve(str, new_len, err); if (err && *err != GUF_ERR_NONE) { guf_err_set_or_panic(err, *err, GUF_ERR_MSG("in guf_str_try_append_view: failed to reserve capacity")); return NULL; } } const size_t new_cap = guf_str_cap_internal_(str); GUF_ASSERT_RELEASE(new_cap >= old_cap && new_cap >= new_len); GUF_ASSERT(((ptrdiff_t)new_cap - (ptrdiff_t)old_len) >= sv.len); char *c_str_dst = guf_str_get_cstr_internal_(str); for (size_t dst_i = old_len, src_i = 0; dst_i < new_len; ++dst_i, ++src_i) { GUF_ASSERT(src_i < (size_t)sv.len); c_str_dst[dst_i] = sv.str[src_i]; } c_str_dst[new_len] = '\0'; guf_str_set_len_internal_(str, new_len); GUF_ASSERT(guf_str_is_valid(str)); guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } GUF_STR_KWRDS guf_str *guf_str_append(guf_str *str, guf_str_view sv) { return guf_str_try_append(str, sv, NULL); } GUF_STR_KWRDS guf_str *guf_str_try_substr(guf_str *str, ptrdiff_t pos, ptrdiff_t count, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); const ptrdiff_t len = guf_str_len(str); if (pos < 0 || pos >= len) { guf_err_set_or_panic(err, GUF_ERR_IDX_RANGE, GUF_ERR_MSG("in guf_str_try_substr: pos out of range")); return NULL; } else if (count < 0) { guf_err_set_or_panic(err, GUF_ERR_IDX_RANGE, GUF_ERR_MSG("in guf_str_try_substr: count < 0")); return NULL; } char *c_str = guf_str_try_get_cstr(str, err); if (err && *err != GUF_ERR_NONE) { guf_err_set_or_panic(err, *err, GUF_ERR_MSG("in guf_str_try_substr: string is readonly (guf_str_try_get_cstr() failed)")); return NULL; } GUF_ASSERT(c_str); ptrdiff_t pos_plus_count = 0; guf_saturating_add_ptrdiff_t(pos, count, &pos_plus_count); const ptrdiff_t substr_len = pos_plus_count > len ? len - pos : count; GUF_ASSERT(substr_len >= 0 && substr_len <= len && substr_len <= guf_str_capacity(str)); GUF_ASSERT((size_t)pos + (size_t)(substr_len) <= (size_t)len); // [*] if (pos > 0) { for (ptrdiff_t i = 0; i < substr_len; ++i) { // GUF_ASSERT(pos + i < len); // cf. [*] c_str[i] = c_str[pos + i]; } } c_str[substr_len] = '\0'; guf_str_set_len_internal_(str, substr_len); GUF_ASSERT(guf_str_is_valid(str)); guf_err_set_if_not_null(err, GUF_ERR_NONE); return str; } GUF_STR_KWRDS guf_str *guf_str_substr(guf_str *str, ptrdiff_t pos, ptrdiff_t count) { return guf_str_try_substr(str, pos, count, NULL); } GUF_STR_KWRDS char guf_str_try_pop_back(guf_str *str, guf_err *err) { GUF_ASSERT(guf_str_is_valid(str)); const ptrdiff_t len = guf_str_len(str); if (len <= 0) { guf_err_set_or_panic(err, GUF_ERR_IDX_RANGE, GUF_ERR_MSG("in guf_str_try_pop_back: len <= 0")); return '\0'; } GUF_ASSERT(len - 1 >= 0); const char last = guf_str_at_cpy(str, len - 1); guf_str_try_substr(str, 0, len - 1, err); if (err && *err != GUF_ERR_NONE) { guf_err_set_or_panic(err, *err, GUF_ERR_MSG("in guf_str_try_pop_back: guf_str_try_substr failed")); return '\0'; } else { GUF_ASSERT(guf_str_is_valid(str)); GUF_ASSERT(guf_str_len(str) == len - 1); guf_err_set_if_not_null(err, GUF_ERR_NONE); return last; } } GUF_STR_KWRDS char guf_str_pop_back(guf_str *str) { return guf_str_try_pop_back(str, NULL); } GUF_STR_KWRDS guf_hash_size_t guf_str_hash(const guf_str *str) { GUF_ASSERT(guf_str_is_valid(str)); return guf_str_view_hash(&(guf_str_view){.str = guf_str_const_cstr(str), .len = guf_str_len(str)}); } GUF_STR_KWRDS uint64_t guf_str_hash64(const guf_str *str) { GUF_ASSERT(guf_str_is_valid(str)); return guf_str_view_hash64(&(guf_str_view){.str = guf_str_const_cstr(str), .len = guf_str_len(str)}); } GUF_STR_KWRDS uint32_t guf_str_hash32(const guf_str *str) { GUF_ASSERT(guf_str_is_valid(str)); return guf_str_view_hash32(&(guf_str_view){.str = guf_str_const_cstr(str), .len = guf_str_len(str)}); } // guf_str_view: GUF_STR_KWRDS bool guf_str_view_is_valid(guf_str_view sv) { if (sv.str) { return sv.len >= 0; } else { return sv.len == 0; } } GUF_STR_KWRDS guf_str_view guf_str_view_from_str(const guf_str *str) { GUF_ASSERT(str); GUF_ASSERT(guf_str_is_valid(str)); return (guf_str_view){.str = guf_str_const_cstr(str), .len = guf_str_len(str)}; } /* cf. "str_pop_first_split": - https://accu.org/conf-docs/PDFs_2021/luca_sass_modern_c_and_what_we_can_learn_from_it.pdf ("String handling in Modern C", page 128 of the pdf) - https://youtu.be/QpAhX-gsHMs?si=lCvm6o60LrYHaAHc&t=3059 (last-retrieved 2025-04-30) */ GUF_STR_KWRDS guf_str_view guf_str_view_pop_split(guf_str_view *src, guf_str_view delim) { GUF_ASSERT(src); GUF_ASSERT_RELEASE(guf_str_view_is_valid(*src)); GUF_ASSERT_RELEASE(guf_str_view_is_valid(delim)); if (delim.len <= 0) { goto delim_not_found; } for (ptrdiff_t src_idx = 0; src_idx < src->len; ++src_idx) { ptrdiff_t num_matched = 0; for (ptrdiff_t delim_idx = 0; delim_idx < delim.len && (src_idx + delim.len <= src->len); ++delim_idx) { if (delim.str[delim_idx] != src->str[src_idx + delim_idx]) { break; } ++num_matched; } if (num_matched == delim.len) { // Delimiter found in interval [src_idx, src_idx + delim.len) const guf_str_view popped = guf_str_view_substr(*src, 0, src_idx); const ptrdiff_t advance_len = popped.len + delim.len; GUF_ASSERT(advance_len > 0 && advance_len >= delim.len); src->len -= advance_len; GUF_ASSERT(src->len >= 0); src->str = src->len > 0 ? src->str + advance_len : NULL; return popped; } } delim_not_found:; const guf_str_view popped = *src; src->str = NULL; src->len = 0; return popped; } static inline int guf_str_view_cmp_asc_by_len_(const void *a, const void *b) { const guf_str_view *asv = (const guf_str_view*)a; const guf_str_view *bsv = (const guf_str_view*)b; if (asv->len < bsv->len) { return -1; } else if (asv->len > bsv->len) { return 1; } else { return 0; } } static inline int guf_str_view_cmp_desc_by_len_(const void *a, const void *b) { return -guf_str_view_cmp_asc_by_len_(a, b); } GUF_STR_KWRDS guf_str_tok_state guf_str_tok_state_new(guf_str_view str, guf_str_view *delims, ptrdiff_t delim_count, guf_str_tok_delim_opt delim_match_opt) { GUF_ASSERT_RELEASE(guf_str_view_is_valid(str)); GUF_ASSERT_RELEASE(delim_count > 0 ? delims != NULL : true); ptrdiff_t max_delim_len = 0; if (delims && delim_count > 0) { for (ptrdiff_t i = 0; i < delim_count; ++i) { GUF_ASSERT_RELEASE(guf_str_view_is_valid(delims[i])); max_delim_len = guf_max_ptrdiff_t(max_delim_len, delims[i].len); } } if (max_delim_len <= 0 || delim_count <= 0 || delims == NULL) { delims = NULL; delim_count = 0; } else { switch (delim_match_opt) { case GUF_STR_TOK_DELIM_OPT_MATCH_LONGEST: qsort(delims, delim_count, sizeof(delims[0]), guf_str_view_cmp_desc_by_len_); break; case GUF_STR_TOK_DELIM_OPT_MATCH_SHORTEST: qsort(delims, delim_count, sizeof(delims[0]), guf_str_view_cmp_asc_by_len_); break; case GUF_STR_TOK_DELIM_OPT_MATCH_IN_ORDER: break; default: GUF_ASSERT(false); break; } } return (guf_str_tok_state) { .input = str, .delims = delims, .delim_count = delim_count, .num_toks_read = 0, .num_delims_read = 0, .cur_tok = (guf_str_view){.len = 0, .str = NULL}, .cur_delim = (guf_str_view){.len = 0, .str = NULL}, .done = false }; } GUF_STR_KWRDS bool guf_str_tok_next(guf_str_tok_state *state, bool preserve_delims) { GUF_ASSERT(state); GUF_ASSERT(guf_str_view_is_valid(state->input)); GUF_ASSERT(state->num_toks_read >= 0 && state->num_delims_read >= 0 && state->delim_count >= 0); GUF_ASSERT(state->delim_count > 0 ? state->delims != NULL : true); if (state->done || state->input.len <= 0 || state->input.str == NULL) { state->done = true; state->cur_tok = (guf_str_view){.str = NULL, .len = 0}; state->cur_delim = (guf_str_view){.str = NULL, .len = 0}; return false; } else if (state->delim_count <= 0 || state->delims == NULL) { state->done = true; state->cur_tok = state->input; state->cur_delim = (guf_str_view){.str = NULL, .len = 0}; return state->cur_tok.len > 0; } find_next_delim_begin: state->cur_tok = state->cur_delim = (guf_str_view){.str = state->input.str, .len = 0}; while (state->input.len > 0) { GUF_ASSERT(state->input.str != NULL); for (ptrdiff_t delim_idx = 0; delim_idx < state->delim_count; ++delim_idx) { // If state->delims is sorted descending/ascending by length, match the longest/shortest possible delim const guf_str_view delim = state->delims[delim_idx]; GUF_ASSERT(guf_str_view_is_valid(delim)); if (delim.len > state->input.len || delim.len <= 0) { // Current delim cannot possibly match. continue; } const guf_str_view delim_candidate = guf_str_view_substr(state->input, 0, delim.len); if (guf_str_view_equal(&delim_candidate, &delim)) { // a) Matched the current delim: GUF_ASSERT(state->input.len >= delim.len); GUF_ASSERT(state->cur_tok.len >= 0); state->cur_delim = delim; state->num_delims_read += 1; state->input.len -= delim.len; state->input.str = state->input.len > 0 ? state->input.str + delim.len : NULL; if (!preserve_delims && state->cur_tok.len == 0) { goto find_next_delim_begin; } state->num_toks_read += state->cur_tok.len > 0 ? 1 : 0; state->done = state->input.len <= 0; GUF_ASSERT(state->cur_tok.len > 0 || state->cur_delim.len > 0); return true; } } // b) Could not match any of the delims: state->cur_tok.len += 1; state->input.len -= 1; state->input.str = state->input.len > 0 ? state->input.str + 1 : NULL; } state->done = true; GUF_ASSERT(state->cur_tok.len >= 0); state->cur_delim = (guf_str_view){.str = NULL, .len = 0}; if (state->cur_tok.len > 0) { state->num_toks_read += 1; } return state->cur_tok.len > 0; } GUF_STR_KWRDS guf_str_view guf_str_view_trim_left_ascii(guf_str_view sv) { if (sv.len <= 0 || sv.str == NULL) { return sv; } for (; sv.len > 0 && guf_char_isspace_ascii(*sv.str); --sv.len, ++sv.str) ; GUF_ASSERT(sv.len >= 0); GUF_ASSERT(sv.len == 0 || !guf_char_isspace_ascii(*sv.str)); return sv; } GUF_STR_KWRDS guf_str_view guf_str_view_trim_right_ascii(guf_str_view sv) { if (sv.len <= 0 || sv.str == NULL) { return sv; } for (; sv.len > 0 && guf_char_isspace_ascii(sv.str[sv.len - 1]); --sv.len) ; GUF_ASSERT(sv.len >= 0); GUF_ASSERT(sv.len == 0 || !guf_char_isspace_ascii(sv.str[sv.len - 1])); return sv; } GUF_STR_KWRDS guf_str_view guf_str_view_substr(guf_str_view str, ptrdiff_t pos, ptrdiff_t count) { GUF_ASSERT_RELEASE(str.str); GUF_ASSERT_RELEASE(pos >= 0); GUF_ASSERT_RELEASE(count >= 0); if (str.len == 0 || count == 0 || pos >= str.len || pos < 0 || str.str == NULL) { return (guf_str_view){.str = str.str, .len = 0}; } ptrdiff_t pos_plus_count = 0; guf_saturating_add_ptrdiff_t(pos, count, &pos_plus_count); const ptrdiff_t substr_len = pos_plus_count > str.len ? str.len - pos : count; GUF_ASSERT(substr_len >= 0); GUF_ASSERT(substr_len <= str.len); const guf_str_view sub_sv = {.str = str.str + pos, .len = substr_len}; GUF_ASSERT(guf_str_view_is_valid(sub_sv)); return sub_sv; } GUF_STR_KWRDS guf_hash_size_t guf_str_view_hash(const guf_str_view *sv) { GUF_ASSERT(sv); if (!sv->str || sv->len <= 0) { return GUF_HASH_INIT; } return guf_hash(sv->str, sv->len, GUF_HASH_INIT); } GUF_STR_KWRDS uint64_t guf_str_view_hash64(const guf_str_view *sv) { GUF_ASSERT(sv); if (!sv->str || sv->len <= 0) { return GUF_HASH64_INIT; } return guf_hash64(sv->str, sv->len, GUF_HASH64_INIT); } GUF_STR_KWRDS uint32_t guf_str_view_hash32(const guf_str_view *sv) { GUF_ASSERT(sv); if (!sv->str || sv->len <= 0) { return GUF_HASH32_INIT; } return guf_hash32(sv->str, sv->len, GUF_HASH32_INIT); } GUF_STR_KWRDS bool guf_str_view_equal(const guf_str_view* a, const guf_str_view* b) { GUF_ASSERT(a && b); if (a->len != b->len) { return false; } if ((!a->str && b->str) || (!b->str && a->str)) { return false; } else if (!a->str && !b->str) { return a->len == b->len; } GUF_ASSERT(a->str && b->str); if (a->len <= 0) { return true; } return 0 == memcmp(a->str, b->str, a->len); } GUF_STR_KWRDS bool guf_str_view_equal_val_arg(guf_str_view a_val, guf_str_view b_val) { return guf_str_view_equal(&a_val, &b_val); } #undef GUF_STR_IMPL #undef GUF_STR_IMPL_STATIC #endif /* end impl */ #undef GUF_STR_KWRDS