libguf/src/guf_rand.h
2025-02-24 00:01:48 +01:00

415 lines
14 KiB
C

#ifndef GUF_RAND_H
#define GUF_RAND_H
#include "guf_common.h"
#if defined(GUF_IMPL_STATIC) || defined(GUF_STATIC)
#define GUF_FN_KEYWORDS static
#else
#define GUF_FN_KEYWORDS
#endif
#ifdef GUF_RAND_32_BIT
#define GUF_RAND_MAX UINT32_MAX
typedef struct guf_randstate { // State for xoshiro128** 1.1
uint32_t s[4];
} guf_randstate;
#else
#define GUF_RAND_MAX UINT64_MAX
typedef struct guf_randstate { // State for xoshiro256** 1.0
uint64_t s[4];
} guf_randstate;
#endif
GUF_FN_KEYWORDS uint64_t guf_rand_splitmix64(uint64_t *state);
GUF_FN_KEYWORDS void guf_randstate_init(guf_randstate *state, uint64_t seed);
void guf_randstate_jump(guf_randstate *state); // Advance the state; equivalent to 2^128 calls to guf_rand_u64(state)
// uniform distributions
GUF_FN_KEYWORDS uint32_t guf_rand_u32(guf_randstate *state); // [0, UINT32_MAX]
GUF_FN_KEYWORDS uint64_t guf_rand_u64(guf_randstate *state); // [0, UINT64_MAX]
GUF_FN_KEYWORDS double guf_rand_f64(guf_randstate *state); // [0.0, 1.0)
GUF_FN_KEYWORDS float guf_rand_f32(guf_randstate *state); // [0.f, 1.f)
// return true with a probability of p, false with a probability of (1 - p)
GUF_FN_KEYWORDS bool guf_rand_bernoulli_trial_f32(guf_randstate *state, float p);
GUF_FN_KEYWORDS bool guf_rand_bernoulli_trial_f64(guf_randstate *state, double p);
GUF_FN_KEYWORDS bool guf_rand_flip(guf_randstate *state); // Fair coin flip (bernoulli trial with p == 0.5)
GUF_FN_KEYWORDS double guf_randrange_f64(guf_randstate *state, double min, double end); // [min, end)
GUF_FN_KEYWORDS float guf_randrange_f32(guf_randstate *state, float min, float end); // [min, end)
GUF_FN_KEYWORDS int32_t guf_randrange_i32(guf_randstate *state, int32_t min, int32_t max); // [min, max]
GUF_FN_KEYWORDS uint32_t guf_randrange_u32(guf_randstate *state, uint32_t min, uint32_t max); // [min, max]
GUF_FN_KEYWORDS int64_t guf_randrange_i64(guf_randstate *state, int64_t min, int64_t max); // [min, max]
// normal distributions
GUF_FN_KEYWORDS void guf_rand_normal_sample_f64(guf_randstate *state, double mean, double std_dev, double *result, ptrdiff_t n);
GUF_FN_KEYWORDS void guf_rand_normal_sample_f32(guf_randstate *state, float mean, float std_dev, float *result, ptrdiff_t n);
GUF_FN_KEYWORDS double guf_rand_normal_sample_one_f64(guf_randstate *state, double mean, double std_dev);
GUF_FN_KEYWORDS float guf_rand_normal_sample_one_f32(guf_randstate *state, float mean, float std_dev);
#endif
#if defined(GUF_IMPL) || defined(GUF_IMPL_STATIC)
#include <math.h>
#include <float.h>
#include "guf_common.h"
#include "guf_assert.h"
#include "guf_math.h"
/*
splitmix64 (public domain) written in 2015 by Sebastiano Vigna (vigna@acm.org)
cf. https://prng.di.unimi.it/splitmix64.c (last-retrieved 2025-02-11)
*/
GUF_FN_KEYWORDS uint64_t guf_rand_splitmix64(uint64_t *state)
{
GUF_ASSERT(state);
uint64_t z = ((*state) += 0x9e3779b97f4a7c15);
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
return z ^ (z >> 31);
}
GUF_FN_KEYWORDS void guf_randstate_init(guf_randstate *state, uint64_t seed)
{
GUF_ASSERT_RELEASE(state);
#ifdef GUF_RAND_32_BIT
for (size_t i = 0; i < GUF_STATIC_BUF_SIZE(state->s); ++i) {
state->s[i] = (uint32_t)(guf_rand_splitmix64(&seed) >> 32);
}
if (!state->s[0] && !state->s[1] && !state->s[2] && !state->s[3]) { // State must not be only zeroes:
state->s[0] = 0x9e3779b9; // arbitrary constant != 0
seed = 0x9e3779b97f4a7c15;
for (size_t i = 1; i < GUF_STATIC_BUF_SIZE(state->s); ++i) {
state->s[i] = (uint32_t)(guf_rand_splitmix64(&seed) >> 32);
}
}
#else
for (size_t i = 0; i < GUF_STATIC_BUF_SIZE(state->s); ++i) {
state->s[i] = guf_rand_splitmix64(&seed);
}
if (!state->s[0] && !state->s[1] && !state->s[2] && !state->s[3]) { // State must not be only zeroes:
state->s[0] = 0x9e3779b97f4a7c15; // arbitrary constant != 0
seed = state->s[0];
for (size_t i = 1; i < GUF_STATIC_BUF_SIZE(state->s); ++i) {
state->s[i] = guf_rand_splitmix64(&seed);
}
}
#endif
}
GUF_FN_KEYWORDS uint32_t guf_rand_u32(guf_randstate *state)
{
GUF_ASSERT(state);
GUF_ASSERT(state->s[0] || state->s[1] || state->s[2] || state->s[3]);
#ifdef GUF_RAND_32_BIT
/*
xoshiro128** 1.1 (public domain) written in 2018 by David Blackman and Sebastiano Vigna (vigna@acm.org)
cf. https://prng.di.unimi.it/xoshiro128starstar.c (last-retrieved 2025-02-11)
*/
const uint32_t result = guf_rotl_u32(state->s[1] * 5, 7) * 9;
const uint32_t t = state->s[1] << 9;
state->s[2] ^= state->s[0];
state->s[3] ^= state->s[1];
state->s[1] ^= state->s[2];
state->s[0] ^= state->s[3];
state->s[2] ^= t;
state->s[3] = guf_rotl_u32(state->s[3], 11);
return result;
#else
return (uint32_t)(guf_rand_u64(state) >> 32);
#endif
}
GUF_FN_KEYWORDS uint64_t guf_rand_u64(guf_randstate *state)
{
GUF_ASSERT(state);
GUF_ASSERT(state->s[0] || state->s[1] || state->s[2] || state->s[3]);
#ifdef GUF_RAND_32_BIT
const uint32_t lower_bits = guf_rand_u32(state);
const uint32_t upper_bits = guf_rand_u32(state);
return ((uint64_t)upper_bits << 32) | (uint64_t)lower_bits; // TODO: not sure if that's a good idea...
#else
/*
xoshiro256** 1.0 (public domain) written in 2018 by David Blackman and Sebastiano Vigna (vigna@acm.org)
cf. https://prng.di.unimi.it/xoshiro256starstar.c (last-retrieved 2025-02-11)
*/
const uint64_t result = guf_rotl_u64(state->s[1] * 5, 7) * 9;
const uint64_t t = state->s[1] << 17;
state->s[2] ^= state->s[0];
state->s[3] ^= state->s[1];
state->s[1] ^= state->s[2];
state->s[0] ^= state->s[3];
state->s[2] ^= t;
state->s[3] = guf_rotl_u64(state->s[3], 45);
return result;
#endif
}
/*
Equivalent to 2^128 calls to guf_rand() (or 2^64 calls if GUF_RAND_32_BIT); it can be used to generate 2^128 (or 2^64)
non-overlapping subsequences for parallel computations.
*/
void guf_randstate_jump(guf_randstate *state)
{
GUF_ASSERT(state);
#ifdef GUF_RAND_32_BIT
static const uint32_t JUMP[] = { 0x8764000b, 0xf542d2d3, 0x6fa035c3, 0x77f2db5b };
uint32_t s0 = 0;
uint32_t s1 = 0;
uint32_t s2 = 0;
uint32_t s3 = 0;
for(size_t i = 0; i < sizeof JUMP / sizeof *JUMP; ++i) {
for(int b = 0; b < 32; ++b) {
if (JUMP[i] & UINT32_C(1) << b) {
s0 ^= state->s[0];
s1 ^= state->s[1];
s2 ^= state->s[2];
s3 ^= state->s[3];
}
guf_rand_u32(state);
}
}
state->s[0] = s0;
state->s[1] = s1;
state->s[2] = s2;
state->s[3] = s3;
#else
static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba, 0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };
uint64_t s0 = 0;
uint64_t s1 = 0;
uint64_t s2 = 0;
uint64_t s3 = 0;
for (size_t i = 0; i < sizeof JUMP / sizeof *JUMP; ++i) {
for (int b = 0; b < 64; ++b) {
if (JUMP[i] & UINT64_C(1) << b) {
s0 ^= state->s[0];
s1 ^= state->s[1];
s2 ^= state->s[2];
s3 ^= state->s[3];
}
guf_rand_u64(state);
}
}
state->s[0] = s0;
state->s[1] = s1;
state->s[2] = s2;
state->s[3] = s3;
#endif
}
// Generate double in the unit interval [0, 1)
GUF_FN_KEYWORDS double guf_rand_f64(guf_randstate *state)
{
// cf. https://prng.di.unimi.it/ and https://dotat.at/@/2023-06-23-random-double.html (last-retrieved 2025-02-11)
return (guf_rand_u64(state) >> 11) * 0x1.0p-53; // 11 == 64 - 53 (double has a 53-bit mantissa/significand)
}
// Generate float in the unit interval [0, 1)
GUF_FN_KEYWORDS float guf_rand_f32(guf_randstate *state)
{
#ifdef GUF_RAND_32_BIT
return (guf_rand_u32(state) >> 8) * 0x1.0p-24f; // 8 == 32 - 24; (float has a 24-bit mantissa/significand)
#else
return (guf_rand_u64(state) >> 40) * 0x1.0p-24f; // 40 == 64 - 24; (float has a 24-bit mantissa/significand)
#endif
}
GUF_FN_KEYWORDS bool guf_rand_bernoulli_trial_f32(guf_randstate *state, float p)
{
p = guf_clamp_f32(p, 0, 1);
return guf_rand_f32(state) < p; // never true for p = 0, always true for p = 1 since guf_rand_f64 is in range [0, 1)
}
GUF_FN_KEYWORDS bool guf_rand_bernoulli_trial_f64(guf_randstate *state, double p)
{
p = guf_clamp_f64(p, 0, 1);
return guf_rand_f64(state) < p; // never true for p = 0, always true for p = 1 since guf_rand_f64 is in range [0, 1)
}
GUF_FN_KEYWORDS bool guf_rand_flip(guf_randstate *state)
{
#ifdef GUF_RAND_32_BIT
return guf_rand_bernoulli_trial_f32(state, 0.5f);
#else
return guf_rand_bernoulli_trial_f64(state, 0.5);
#endif
}
// returns uniformly-distributed random double in range [min, end) (or min if min == end)
GUF_FN_KEYWORDS double guf_randrange_f64(guf_randstate *state, double min, double end)
{
if (min == (double)INFINITY) {
min = DBL_MAX;
} else if (min == (double)-INFINITY) {
min = -DBL_MAX;
}
if (end == (double)INFINITY) {
end = DBL_MAX;
} else if (end == (double)-INFINITY) {
end = -DBL_MAX;
}
GUF_ASSERT_RELEASE(end >= min);
return guf_rand_f64(state) * (end - min) + min;
}
// returns uniformly-distributed random float in range [min, end) (or min if min == end)
GUF_FN_KEYWORDS float guf_randrange_f32(guf_randstate *state, float min, float end)
{
if (min == INFINITY) {
min = FLT_MAX;
} else if (min == -INFINITY) {
min = -FLT_MAX;
}
if (end == INFINITY) {
end = FLT_MAX;
} else if (end == -INFINITY) {
end = -FLT_MAX;
}
GUF_ASSERT_RELEASE(end >= min);
return guf_rand_f32(state) * (end - min) + min;
}
// returns uniformly-distributed random int32_t in range [min, max] (max is inclusive as opposed to the f32/f64 versions)
GUF_FN_KEYWORDS int32_t guf_randrange_i32(guf_randstate *state, int32_t min, int32_t max)
{
GUF_ASSERT_RELEASE(max >= min);
if (min == max) {
return min;
}
const double delta = (double)max - (double)min;
// cf. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random (last-retrieved 2025-02-12)
const double result = floor(guf_rand_f64(state) * (delta + 1.0) + min);
GUF_ASSERT(result >= min && result <= max);
return (int32_t)result;
}
GUF_FN_KEYWORDS uint32_t guf_randrange_u32(guf_randstate *state, uint32_t min, uint32_t max)
{
GUF_ASSERT_RELEASE(max >= min);
if (min == max) {
return min;
}
const double delta = (double)max - (double)min;
const double result = floor(guf_rand_f64(state) * (delta + 1.0) + min);
GUF_ASSERT(result >= min && result <= max);
return (uint32_t)result;
}
// returns uniformly-distributed random int64_t in range [min, max] (max is inclusive as opposed to the f32/f64 versions)
GUF_FN_KEYWORDS int64_t guf_randrange_i64(guf_randstate *state, int64_t min, int64_t max)
{
GUF_ASSERT_RELEASE(max >= min);
if (min == max) {
return min;
}
const uint64_t rand_max_i64 = UINT64_MAX >> 1; // 2^63 - 1 (== INT64_MAX)
const uint64_t delta = guf_absdiff_i64(max, min);
if (delta > rand_max_i64) {
guf_panic(GUF_ERR_INT_OVERFLOW, GUF_ERR_MSG("in function guf_randrange_i64: interval [min, max] larger than INT64_MAX"));
return -1;
}
/*
We should not use the same approach as in guf_randrange_i32 because (max - min) might be close to 2^63 - 1
cf. https://c-faq.com/lib/randrange.html (last-retrieved 2025-02-11)
https://stackoverflow.com/a/6852396 (last-retrieved 2025-02-11)
*/
const uint64_t num_rand_vals = rand_max_i64 + 1u; // 2^63
const uint64_t num_bins = (delta + 1u);
const uint64_t bin_size = num_rand_vals / num_bins; // bin_size = floor(num_rand_vals / num_bins)
const uint64_t limit = num_rand_vals - (num_rand_vals % num_bins); // limit == bin_size * num_bins
GUF_ASSERT(limit == bin_size * num_bins);
/*
since (num_rand_vals % num_bins) is at most 2^62 + 1 (I think...), the minimum limit is 2^63 - (2^62 + 1),
which means in the worst case, the chance of having to iterate (i.e. step >= limit)
is 1 - (2^63 - (2^62 + 1)) / 2^63 == 0.5
*/
uint64_t step;
do {
step = guf_rand_u64(state) >> 1; // [0, 2^63 - 1]
} while (step >= limit);
step = step / bin_size;
const int64_t rnd = min + step;
GUF_ASSERT(rnd >= min && rnd <= max);
return rnd;
}
// Box-Müller-transform transcribed from wikipedia, cf. https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform (last-retrieved 2025-02-12)
GUF_FN_KEYWORDS void guf_rand_normal_sample_f64(guf_randstate *state, double mean, double std_dev, double *result, ptrdiff_t n)
{
GUF_ASSERT_RELEASE(result);
GUF_ASSERT_RELEASE(n >= 0);
const double TAU = 2.0 * GUF_PI;
ptrdiff_t i = 0;
while (i < n) {
double u1, u2;
do {
u1 = guf_rand_f64(state);
} while (u1 == 0);
u2 = guf_rand_f64(state);
const double mag = std_dev * sqrt(-2.0 * log(u1));
result[i++] = mag * cos(TAU * u2) + mean;
if (i < n) {
result[i++] = mag * sin(TAU * u2) + mean;
}
}
}
GUF_FN_KEYWORDS void guf_rand_normal_sample_f32(guf_randstate *state, float mean, float std_dev, float *result, ptrdiff_t n)
{
GUF_ASSERT_RELEASE(result);
GUF_ASSERT_RELEASE(n >= 0);
const float TAU = 2.f * (float)GUF_PI;
ptrdiff_t i = 0;
while (i < n) {
float u1, u2;
do {
u1 = guf_rand_f32(state);
} while (u1 == 0);
u2 = guf_rand_f32(state);
const float mag = std_dev * sqrtf(-2.f * logf(u1));
result[i++] = mag * cosf(TAU * u2) + mean;
if (i < n) {
result[i++] = mag * sinf(TAU * u2) + mean;
}
}
}
GUF_FN_KEYWORDS double guf_rand_normal_sample_one_f64(guf_randstate *state, double mean, double std_dev)
{
double result;
guf_rand_normal_sample_f64(state, mean, std_dev, &result, 1);
return result;
}
GUF_FN_KEYWORDS float guf_rand_normal_sample_one_f32(guf_randstate *state, float mean, float std_dev)
{
float result;
guf_rand_normal_sample_f32(state, mean, std_dev, &result, 1);
return result;
}
#undef GUF_IMPL
#undef GUF_IMPL_STATIC
#endif /* endif GUF_IMPL/GUF_IMPL_STATIC */
#undef GUF_STATIC
#undef GUF_FN_KEYWORDS
#undef GUF_RAND_32_BIT