var squareRotation = 0.0; //main(); window.addEventListener("load", main); // // Start here // function main() { const canvas = document.querySelector('#canvas'); const gl = canvas.getContext('webgl'); // If we don't have a GL context, give up now if (!gl) { alert('Unable to initialize WebGL. Your browser or machine may not support it.'); return; } // Vertex shader program const vsSource = ` attribute vec4 aVertexPosition; attribute vec4 aVertexColor; uniform mat4 uModelViewMatrix; uniform mat4 uProjectionMatrix; varying lowp vec4 vColor; void main(void) { gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition; vColor = aVertexColor; } `; // Fragment shader program const fsSource = ` varying lowp vec4 vColor; void main(void) { gl_FragColor = vColor; } `; // Initialize a shader program; this is where all the lighting // for the vertices and so forth is established. const shaderProgram = initShaderProgram(gl, vsSource, fsSource); // Collect all the info needed to use the shader program. // Look up which attributes our shader program is using // for aVertexPosition, aVevrtexColor and also // look up uniform locations. const programInfo = { program: shaderProgram, attribLocations: { vertexPosition: gl.getAttribLocation(shaderProgram, 'aVertexPosition'), vertexColor: gl.getAttribLocation(shaderProgram, 'aVertexColor'), }, uniformLocations: { projectionMatrix: gl.getUniformLocation(shaderProgram, 'uProjectionMatrix'), modelViewMatrix: gl.getUniformLocation(shaderProgram, 'uModelViewMatrix'), }, }; // Here's where we call the routine that builds all the // objects we'll be drawing. const buffers = initBuffers(gl); var then = 0; // Draw the scene repeatedly function render(now) { now *= 0.001; // convert to seconds const deltaTime = now - then; then = now; drawScene(gl, programInfo, buffers, deltaTime); requestAnimationFrame(render); } requestAnimationFrame(render); } // // initBuffers // // Initialize the buffers we'll need. For this demo, we just // have one object -- a simple two-dimensional square. // function initBuffers(gl) { // Create a buffer for the square's positions. const positionBuffer = gl.createBuffer(); // Select the positionBuffer as the one to apply buffer // operations to from here out. gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer); // Now create an array of positions for the square. const positions = [ 1.0, 1.0, -1.0, 1.0, 1.0, -1.0, -1.0, -1.0, ]; // Now pass the list of positions into WebGL to build the // shape. We do this by creating a Float32Array from the // JavaScript array, then use it to fill the current buffer. gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(positions), gl.STATIC_DRAW); // Now set up the colors for the vertices const colors = [ 1.0, 0.5, 1.0, 1.0, // white 1.0, 0.6, 1.0, 1.0, // red 1.0, 0.7, 1.0, 1.0, // green 1.0, 0.3, 1.0, 1.0, // blue ]; const colorBuffer = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, colorBuffer); gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colors), gl.STATIC_DRAW); return { position: positionBuffer, color: colorBuffer, }; } // // Draw the scene. // function drawScene(gl, programInfo, buffers, deltaTime) { gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear to black, fully opaque gl.clearDepth(1.0); // Clear everything gl.enable(gl.DEPTH_TEST); // Enable depth testing gl.depthFunc(gl.LEQUAL); // Near things obscure far things // Clear the canvas before we start drawing on it. gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); // Create a perspective matrix, a special matrix that is // used to simulate the distortion of perspective in a camera. // Our field of view is 45 degrees, with a width/height // ratio that matches the display size of the canvas // and we only want to see objects between 0.1 units // and 100 units away from the camera. const fieldOfView = 45 * Math.PI / 180; // in radians const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight; const zNear = 0.1; const zFar = 100.0; const projectionMatrix = mat4.create(); // note: glmatrix.js always has the first argument // as the destination to receive the result. mat4.perspective(projectionMatrix, fieldOfView, aspect, zNear, zFar); // Set the drawing position to the "identity" point, which is // the center of the scene. const modelViewMatrix = mat4.create(); // Now move the drawing position a bit to where we want to // start drawing the square. mat4.translate(modelViewMatrix, // destination matrix modelViewMatrix, // matrix to translate [-0.0, 0.0, -6.0]); // amount to translate mat4.rotate(modelViewMatrix, // destination matrix modelViewMatrix, // matrix to rotate squareRotation, // amount to rotate in radians [0, 0, 1]); // axis to rotate around // Tell WebGL how to pull out the positions from the position // buffer into the vertexPosition attribute { const numComponents = 2; const type = gl.FLOAT; const normalize = false; const stride = 0; const offset = 0; gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position); gl.vertexAttribPointer( programInfo.attribLocations.vertexPosition, numComponents, type, normalize, stride, offset); gl.enableVertexAttribArray( programInfo.attribLocations.vertexPosition); } // Tell WebGL how to pull out the colors from the color buffer // into the vertexColor attribute. { const numComponents = 4; const type = gl.FLOAT; const normalize = false; const stride = 0; const offset = 0; gl.bindBuffer(gl.ARRAY_BUFFER, buffers.color); gl.vertexAttribPointer( programInfo.attribLocations.vertexColor, numComponents, type, normalize, stride, offset); gl.enableVertexAttribArray( programInfo.attribLocations.vertexColor); } // Tell WebGL to use our program when drawing gl.useProgram(programInfo.program); // Set the shader uniforms gl.uniformMatrix4fv( programInfo.uniformLocations.projectionMatrix, false, projectionMatrix); gl.uniformMatrix4fv( programInfo.uniformLocations.modelViewMatrix, false, modelViewMatrix); { const offset = 0; const vertexCount = 4; gl.drawArrays(gl.TRIANGLE_STRIP, offset, vertexCount); } // Update the rotation for the next draw squareRotation += deltaTime; } // // Initialize a shader program, so WebGL knows how to draw our data // function initShaderProgram(gl, vsSource, fsSource) { const vertexShader = loadShader(gl, gl.VERTEX_SHADER, vsSource); const fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, fsSource); // Create the shader program const shaderProgram = gl.createProgram(); gl.attachShader(shaderProgram, vertexShader); gl.attachShader(shaderProgram, fragmentShader); gl.linkProgram(shaderProgram); // If creating the shader program failed, alert if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) { alert('Unable to initialize the shader program: ' + gl.getProgramInfoLog(shaderProgram)); return null; } return shaderProgram; } // // creates a shader of the given type, uploads the source and // compiles it. // function loadShader(gl, type, source) { const shader = gl.createShader(type); // Send the source to the shader object gl.shaderSource(shader, source); // Compile the shader program gl.compileShader(shader); // See if it compiled successfully if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) { alert('An error occurred compiling the shaders: ' + gl.getShaderInfoLog(shader)); gl.deleteShader(shader); return null; } return shader; }