2022-12-17 04:53:39 +00:00
|
|
|
G = []
|
|
|
|
for line in open("input"):
|
|
|
|
words = line.split()
|
|
|
|
valve = words[1]
|
|
|
|
rate = int(''.join(x for x in words[4] if x.isdigit()))
|
|
|
|
edges = [x.strip(", ") for x in words[9:]]
|
|
|
|
G.append((valve, rate, edges))
|
|
|
|
|
|
|
|
#print(G)
|
|
|
|
|
|
|
|
import sys, os; sys.path.append(os.path.join(os.path.dirname(__file__), "../lib"))
|
|
|
|
import astar
|
|
|
|
|
2022-12-17 23:10:28 +00:00
|
|
|
def solve():
|
|
|
|
G.sort(key=lambda x: (-x[1],x[0]))
|
|
|
|
B = {v: 1<<i for i,(v,_,_) in enumerate(G)} # bitmasks
|
|
|
|
E = {B[v]: [B[e] for e in edges] for v,_,edges in G} # E[b] = edges of b
|
|
|
|
R = {B[v]: r for v,r,_ in G if r} # R[b] -> rate
|
|
|
|
|
|
|
|
AA = B['AA']
|
|
|
|
|
|
|
|
all_closed = sum(R.keys())
|
2022-12-17 04:53:39 +00:00
|
|
|
all_open = 0
|
|
|
|
|
2022-12-17 23:10:28 +00:00
|
|
|
# TODO: memoize this
|
|
|
|
def pressure(bits):
|
|
|
|
pressure = 0
|
|
|
|
for v,r in R.items():
|
|
|
|
if bits&v:
|
|
|
|
pressure += r
|
|
|
|
return pressure
|
|
|
|
|
|
|
|
assert pressure(all_open) == 0
|
|
|
|
max_pressure = pressure(all_closed)
|
2022-12-17 04:53:39 +00:00
|
|
|
|
|
|
|
# A* search minimizes costs
|
|
|
|
# it can't maxmize anything
|
|
|
|
# so we'll borrow an idea from https://github.com/morgoth1145/advent-of-code/blob/2bf7c157e37b3e0a65deedc6c88e42297d813d1d/2022/16/solution.py
|
|
|
|
# and instead say that the cost of moving from one node to the next
|
|
|
|
# is equal to the potential pressure we could have released from the closed pipes
|
|
|
|
# or, in other words, we'll keep track of how much pressure builds up in
|
|
|
|
# closed pipes instead of how much pressure is released from open pipes
|
|
|
|
|
|
|
|
# let's shink the graph by finding the shortest path between
|
2022-12-17 23:10:28 +00:00
|
|
|
# every pair of rooms (floyd-warshall), and then use that to build a
|
|
|
|
# weighted graph which only has paths from any room to rooms with a valve.
|
|
|
|
#
|
|
|
|
# not only does this make our search space smaller,
|
|
|
|
# it also helps by making it so that the cost changes on every step
|
|
|
|
# (since opening a valve is the only thing that actually changes the pressure)
|
|
|
|
# giving A* a much clearer signal about which paths are worth exploring
|
2022-12-17 06:52:06 +00:00
|
|
|
dist = {}
|
|
|
|
for v in E:
|
|
|
|
dist[v,v] = 0
|
|
|
|
for e in E[v]:
|
|
|
|
dist[v,e] = 1
|
|
|
|
dist[e,v] = 1
|
|
|
|
for t in E:
|
|
|
|
for u in E:
|
|
|
|
for v in E:
|
|
|
|
if (u,t) in dist and (t,v) in dist:
|
|
|
|
dist[u,v] = min(dist.get((u,v),999999), dist[u,t] + dist[t,v])
|
|
|
|
|
2022-12-17 23:10:28 +00:00
|
|
|
W = {} # weighted edges
|
|
|
|
for u in E:
|
|
|
|
W[u] = []
|
|
|
|
for v in R:
|
2022-12-17 06:52:06 +00:00
|
|
|
if (u,v) in dist:
|
|
|
|
W[u].append((v, dist[u,v]))
|
|
|
|
|
2022-12-17 23:10:28 +00:00
|
|
|
print(W[AA])
|
2022-12-17 04:53:39 +00:00
|
|
|
|
|
|
|
# our heuristic cost has to be <= the actual cost of getting to the goal
|
2022-12-17 23:10:28 +00:00
|
|
|
#
|
2022-12-17 04:53:39 +00:00
|
|
|
# here's a simple one:
|
|
|
|
# we know it takes at least 1 minute to open a valve,
|
|
|
|
# and at least another minute to walk to the valve
|
|
|
|
# so we can assign at least cost 2*pressure(closed_valves) to this node
|
|
|
|
# (unless there is only 1 minute left)
|
2022-12-17 23:10:28 +00:00
|
|
|
#
|
|
|
|
# we can keep doing that until there are no valves left to open
|
|
|
|
# or there is no time left.
|
|
|
|
#
|
|
|
|
# note that the nodes with the largest flow rate are assigned
|
|
|
|
# the lowest position in the bitmap, so clearing the bits from
|
|
|
|
# low to high will always give us the optimal order
|
2022-12-17 04:53:39 +00:00
|
|
|
def heuristic(node):
|
|
|
|
v, minutes, closed = node
|
2022-12-17 23:10:28 +00:00
|
|
|
# assume we can open a valve every 2 minutes
|
|
|
|
# how much would that cost?
|
|
|
|
c = 0
|
|
|
|
while closed and minutes > 0:
|
|
|
|
c += pressure(closed) * min(minutes,2)
|
|
|
|
closed &= (closed-1)
|
|
|
|
minutes -= 2
|
|
|
|
return c
|
|
|
|
|
|
|
|
def is_goal(node):
|
|
|
|
v, minutes, closed = node
|
2022-12-17 06:52:06 +00:00
|
|
|
return minutes == 0 or closed == all_open
|
2022-12-17 04:53:39 +00:00
|
|
|
|
|
|
|
info = {}
|
2022-12-17 23:10:28 +00:00
|
|
|
def neighbors(node):
|
|
|
|
v, minutes, closed = node
|
2022-12-17 04:53:39 +00:00
|
|
|
if minutes not in info:
|
|
|
|
print(info)
|
|
|
|
info[minutes] = 0
|
|
|
|
info[minutes] += 1
|
|
|
|
if minutes <= 0:
|
|
|
|
pass
|
|
|
|
elif closed == all_open:
|
2022-12-17 06:52:06 +00:00
|
|
|
yield 0, (v, 0, closed)
|
2022-12-17 04:53:39 +00:00
|
|
|
else:
|
2022-12-17 06:52:06 +00:00
|
|
|
# move to a closed valve (or maybe stay in
|
|
|
|
# the same spot) and open it
|
|
|
|
can_move = False
|
|
|
|
for e, dist in W[v]:
|
|
|
|
t = dist + 1
|
2022-12-17 23:10:28 +00:00
|
|
|
if e&closed and t <= minutes:
|
2022-12-17 06:52:06 +00:00
|
|
|
can_move = True
|
|
|
|
c = pressure(closed)*t
|
|
|
|
yield c, (e, minutes-t, closed&~e)
|
|
|
|
# wait til the end
|
|
|
|
if can_move == False:
|
|
|
|
yield pressure(closed)*minutes, (v, 0, closed)
|
2022-12-17 04:53:39 +00:00
|
|
|
|
2022-12-17 23:10:28 +00:00
|
|
|
minutes = 30
|
|
|
|
start = (AA, minutes, all_closed)
|
|
|
|
|
2022-12-17 04:53:39 +00:00
|
|
|
c, _, path = astar.search(start, is_goal, neighbors, heuristic)
|
|
|
|
print(c)
|
2022-12-17 23:10:28 +00:00
|
|
|
print(max_pressure*minutes - c)
|
|
|
|
|
|
|
|
def heuristic2(node):
|
|
|
|
if is_goal2(node):
|
|
|
|
return 0
|
|
|
|
v1, v2, min1, min2, closed = node
|
|
|
|
# if the players are out of sync, assume the other player
|
|
|
|
# will close one valve when they catch up
|
|
|
|
if min1 != min2:
|
|
|
|
closed &= closed - 1
|
|
|
|
# assume we can open a valve every minute remaining
|
|
|
|
# how much would that cost?
|
|
|
|
c = 0
|
|
|
|
pr = pressure(closed)
|
|
|
|
m = min(min1, min2)
|
|
|
|
while closed and m > 0:
|
|
|
|
c += pr
|
|
|
|
tmp = closed
|
|
|
|
closed &= (closed-1)
|
|
|
|
pr -= R[tmp-closed]
|
|
|
|
m -= 1
|
|
|
|
return c
|
|
|
|
|
|
|
|
def is_goal2(node):
|
|
|
|
_, _, min1, min2, closed = node
|
|
|
|
return min1 == 0 and min2 == 0 or closed == all_open
|
|
|
|
|
|
|
|
def neighbors2(node):
|
|
|
|
v1, v2, min1, min2, closed = node
|
|
|
|
|
|
|
|
if min(min1,min2) not in info:
|
|
|
|
print(info)
|
|
|
|
info.setdefault(min1, 0)
|
|
|
|
info.setdefault(min2, 0)
|
|
|
|
info[min1] += 1
|
|
|
|
info[min2] += 1
|
|
|
|
|
|
|
|
if min1 <= 0 and min2 <= 0:
|
|
|
|
pass
|
|
|
|
elif closed == all_open:
|
|
|
|
yield 0, (v1, v2, 0, 0, closed)
|
|
|
|
else:
|
|
|
|
moved = False
|
|
|
|
# either player can move
|
|
|
|
# but we can't open a valve that would take less time to open
|
|
|
|
# than the other player has already used. we've already paid
|
|
|
|
# the cost for _not_ opening those valves and we can't
|
|
|
|
# retroactively change that (no time travel)
|
|
|
|
|
|
|
|
# if both players are in the same spot and have the same amount of
|
|
|
|
# time remaining, then only let one of them move in order to break
|
|
|
|
# symmetries (this can only happen in the start state)
|
|
|
|
|
|
|
|
# TODO: are there more symmetries we can break?
|
|
|
|
|
|
|
|
# move to a closed valve and open it
|
|
|
|
discount1 = max(min1-min2, 0)
|
|
|
|
for e, dist in W[v1]:
|
|
|
|
t = dist + 1
|
|
|
|
if e&closed and discount1 <= t <= min1:
|
|
|
|
moved = True
|
|
|
|
c = pressure(closed)*(t-discount1)
|
|
|
|
yield c, (e, v2, min1-t, min2, closed&~e)
|
|
|
|
if (v1, min1) != (v2, min2):
|
|
|
|
discount2 = max(min2-min1, 0)
|
|
|
|
for e, dist in W[v2]:
|
|
|
|
t = dist + 1
|
|
|
|
if e&closed and discount2 <= t <= min2:
|
|
|
|
moved = True
|
|
|
|
c = pressure(closed)*(t-discount2)
|
|
|
|
yield c, (v1, e, min1, min2-t, closed&~e)
|
|
|
|
|
|
|
|
# are there no moves left?
|
|
|
|
# then wait out the timer
|
|
|
|
if not moved:
|
|
|
|
yield pressure(closed)*min(min1,min2), (v1, v2, 0, 0, closed)
|
|
|
|
|
|
|
|
minutes = 26
|
|
|
|
start2 = (AA, AA, minutes, minutes, all_closed)
|
|
|
|
info.clear()
|
|
|
|
c, _, path = astar.search(start2, is_goal2, neighbors2, heuristic2)
|
|
|
|
print(c)
|
|
|
|
print(max_pressure*minutes - c)
|
|
|
|
|
|
|
|
solve()
|