day 24 python optimization

main
magical 2022-12-24 11:11:32 -08:00
parent 66f2250b21
commit 0d46922957
1 changed files with 35 additions and 28 deletions

View File

@ -83,34 +83,23 @@ def blocked(x,y,t):
return False
start = (data[0].index('.'), 0)
goal = (data[-1].index('.'), len(data)-1)
leg_distance = abs(start[0] - goal[0]) + abs(start[1] - goal[1])
end = (data[-1].index('.'), len(data)-1)
leg_distance = abs(start[0] - end[0]) + abs(start[1] - end[1])
def is_goal(node):
x, y, t, legs = node
return (x,y) == goal and legs == 0
def is_goal(node, goal=end):
x, y, t = node
return (x,y) == goal
def heuristic(node):
x, y, t, legs = node
if legs == 0:
return 0
if legs % 2 == 1:
g = goal
else:
g = start
return (legs-1)*leg_distance + abs(g[0] - x) + abs(g[1] - y)
def heuristic(node, goal=end):
x, y, t = node
return abs(goal[0] - x) + abs(goal[1] - y)
def neighbors(node):
x, y, t, legs = node
x, y, t = node
n = []
if legs % 2 == 1:
g = goal
else:
g = start
def check(dx,dy):
if not blocked(x+dx,y+dy,t+1):
l = legs - ((x+dx,y+dy) == g)
n.append((1, (x+dx, y+dy, t+1, l)))
n.append((1, (x+dx, y+dy, t+1)))
check(+1,0)
check(0,+1)
check(-1,0)
@ -122,14 +111,32 @@ show(0)
show(1)
#show((len(data)-2)*(len(data[0])-2))
from functools import partial
import time
t0 = time.time()
# part 1
d1 = astar.search(start+(0,), is_goal, neighbors, heuristic)[0]
t1 = time.time()
start_node = start + (0, 1)
print(astar.search(start_node, is_goal, neighbors, heuristic))
# part 2
# we can always take the best path for each leg,
# rather than trying to compute it over the whole trip.
# suppose there is a better overall path B = d1' + d2 + d3
# with d1' > d1. we can "sync up" with this path by simply
# waiting at the end square for d1'-d1 steps at the beginning
# of the next leg. (A* will check this possibility for us.)
# (the start and end squares are never blocked by blizzards.)
# therefore even if we can complete later legs faster by
# starting later, there is no downside to taking the shortest
# path for all the previous legs.
is_start = partial(is_goal, goal=start)
heuristic2 = partial(heuristic, goal=start)
d2 = astar.search(end+(d1,), is_start, neighbors, heuristic2)[0]
d3 = astar.search(start+(d1+d2,), is_goal, neighbors, heuristic)[0]
t2 = time.time()
start_node = start + (0, 3)
print(astar.search(start_node, is_goal, neighbors, heuristic))
print("part 1", t2 - t1)
print("part 2", time.time() - t2)
print("part 1", d1, t1 - t0)
print("part 2", d1+d2+d3, t2 - t0, "(%+f)"%(t2-t1))