day 19 checkpoint
parent
fd84db7072
commit
98ff1e0cf9
63
day19/sol.py
63
day19/sol.py
|
@ -31,10 +31,8 @@ def simulate(blueprint):
|
|||
resources = [0]*4
|
||||
robots = [1,0,0,0]
|
||||
|
||||
rmax = [max(x[i] for x in B.values()) for i in range(3)]
|
||||
rmax.append(99)
|
||||
rmax = [max(x[i] for x in B.values()) for i in range(3)] + [99]
|
||||
|
||||
B['nothing'] = [0,0,0,0]
|
||||
|
||||
worth = {}
|
||||
worth['ore'] = 1
|
||||
|
@ -45,19 +43,31 @@ def simulate(blueprint):
|
|||
print(worth)
|
||||
|
||||
|
||||
B_items = list(B.items())
|
||||
B_items.reverse()
|
||||
|
||||
B_items.append(('nothing', [0,0,0,0]))
|
||||
|
||||
print(B_items)
|
||||
|
||||
minutes = 24
|
||||
q = [(0, robots, resources)]
|
||||
del resources
|
||||
del robots
|
||||
for _ in range(minutes):
|
||||
next = []
|
||||
seen = set()
|
||||
next = [[] for _ in range(4)]
|
||||
for _, robots, resources in q:
|
||||
for robot, cost in B.items():
|
||||
can_build = 0
|
||||
for robot, cost in B_items:
|
||||
i = robot_number[robot]
|
||||
if robot != 'nothing' and robots[i] >= rmax[i]:
|
||||
# don't build more of 1 robot than we can spend in 1 minute
|
||||
continue
|
||||
if robot == 'nothing' and can_build == 3:
|
||||
# always build something unless
|
||||
continue
|
||||
if not all(x >= y for x, y in zip(resources, cost)):
|
||||
# can't afford
|
||||
continue
|
||||
|
||||
new = []
|
||||
|
@ -69,29 +79,38 @@ def simulate(blueprint):
|
|||
new_robots[i] += 1
|
||||
else:
|
||||
new_robots = robots
|
||||
key = str(new_robots)+str(new)
|
||||
if key not in seen:
|
||||
#x = (new[3], new_robots[3], new[2] + new[0], new_robots[2] + new_robots[0], new[1]+new[0], new_robots[1]+new_robots[0], new, new_robots)
|
||||
w = sum(worth[r]*robots[robot_number[r]] for r in worth)
|
||||
x = tuple(reversed(new+new_robots+[new[3]]))
|
||||
x = (new[3], max(new[3], new_robots[3]), max(new[2], new_robots[2]), max(new[1], new_robots[1]), max(new[0], new_robots[0]))
|
||||
#w = sum(worth[r]*robots[robot_number[r]] for r in worth)
|
||||
#x = tuple(reversed(new+new_robots+[new[3]]))
|
||||
#x = (new[3], new_robots)
|
||||
next.append((x, new_robots, new))
|
||||
n = sum(x==0 for x in new_robots)
|
||||
if n == 3:
|
||||
x = (new[0], new_robots[0])
|
||||
elif n == 2:
|
||||
x = (new[1], new[0], new_robots[1], new_robots[0])
|
||||
elif n == 1:
|
||||
x = (new_robots[3], min(new[2],new[0]), max(new[2],new[1]), new_robots[2], new_robots[1],new_robots[0])
|
||||
else:
|
||||
x = (new[3], min(new[2],new[0]), max(new[2],new[0]), new[1])
|
||||
next[n].append((x,new_robots,new))
|
||||
can_build += 1
|
||||
if robot == 'geode':
|
||||
# if we can build a geode then don't bother building anything else
|
||||
break
|
||||
#print(len(next))
|
||||
|
||||
bucket = {}
|
||||
for x,rob,res in next:
|
||||
bucket.setdefault(x[0],[]).append((x,rob,res))
|
||||
limit = 2500
|
||||
|
||||
q = []
|
||||
for i in bucket:
|
||||
bucket[i].sort(reverse=True)
|
||||
q.extend(bucket[i][:2000])
|
||||
for bucket in next:
|
||||
bucket.sort(reverse=True)
|
||||
q.extend(bucket[:limit])
|
||||
|
||||
bucket.clear()
|
||||
|
||||
print(len(q), q[:1])
|
||||
count = sum(len(b) for b in next)
|
||||
print(count, q[:1])
|
||||
|
||||
print(q[0])
|
||||
return q[0][2][3]
|
||||
return q[0][-1][-1]
|
||||
|
||||
#simulate(blueprints[1])
|
||||
|
||||
|
|
Loading…
Reference in New Issue