day 21 cleanup

main
magical 2023-12-24 04:51:38 +00:00
parent c5d4f796e0
commit a940dff830
1 changed files with 122 additions and 161 deletions

View File

@ -1,7 +1,8 @@
import sys import sys
import time
import numpy import numpy
map = [x.strip() for x in sys.stdin]
def read_map(input):
map = [x.strip() for x in input]
if len(map) < 80: if len(map) < 80:
print(map) print(map)
@ -9,32 +10,49 @@ if len(map) < 80:
Y = len(map) Y = len(map)
X = len(map[0]) X = len(map[0])
assert all(len(row) == X for row in map) assert all(len(row) == X for row in map)
assert X == Y
return map
grid = {}
#start = None
#for i, row in enumerate(map):
# for j,c in enumerate(row):
# if c in "#.":
# pass
# elif c == "S":
# start = (i,j)
# else:
# raise Exception("invalid char %s at (%s,%s)" % (c, i, j))
# grid[i,j] = d
#print(grid)
def draw(mask, fill): def draw(mask, fill):
return if len(fill) < 50:
for i, row in enumerate(fill): for i, row in enumerate(fill):
print("".join(".O#!"[f + 2*mask[i,j]] for j,f in enumerate(row))) print("".join(".O#!"[f + 2*mask[i,j]] for j,f in enumerate(row)))
print() print()
def new():
return numpy.zeros((Y,X+1), dtype='uint8')
def solve(grid): def solve(map):
Y = len(map)
X = len(map[0])
fill = numpy.zeros((Y,X+1), dtype='uint8')
mask = numpy.zeros((Y,X+1), dtype='uint8')
for i, row in enumerate(map):
for j, c in enumerate(row):
if c == '#':
mask[i,j] = 1
if c == 'S':
start = (i,j)
# add a border on the side of the map (to prevent wraparound)
mask[:, -1] = 1
# start at the start
fill[start] = 1
for i in range(64):
fill = step(mask, fill)
#draw(mask, fill)
if i == 6-1: # sample
print(fill.sum())
print("part1 = ", fill.sum())
def solve2(map):
Y = len(map)
X = len(map[0])
fill = numpy.zeros((Y,X), dtype='uint8') fill = numpy.zeros((Y,X), dtype='uint8')
mask = numpy.zeros((Y,X), dtype='uint8') mask = numpy.zeros((Y,X), dtype='uint8')
for i, row in enumerate(map): for i, row in enumerate(map):
@ -44,152 +62,96 @@ def solve(grid):
if c == 'S': if c == 'S':
start = (i,j) start = (i,j)
S = 11
if X <= 11:
S = 15
fill = numpy.c_[numpy.tile(fill,(S,S)), numpy.zeros(Y*S, dtype='uint8')]
mask = numpy.c_[numpy.tile(mask,(S,S)), numpy.zeros(Y*S, dtype='uint8')]
cache = {} # bitmap->k
maps = {} # k->bitmap
cycles = {} # k->[k']
print(fill.shape, mask.shape) print(fill.shape, mask.shape)
target_steps = 4064 fill[start] = 1
values, period, d2 = simulate(fill, mask, max_steps=500)
fill[S//2*Y + start[0], S//2*X + start[1]] = 1
values, d2 = sequence(fill, mask, target_steps, X)
for n in 6,10,50,100,500,1000, 5000, 26501365: for n in 6,10,50,100,500,1000, 5000, 26501365:
print(n,extrapolate(n, values, X, d2)) print(n, extrapolate(n, values, period, d2))
return
# find the tiles reachable in n steps from each possible start def simulate(fill, mask, max_steps):
# position Y,X = mask.shape
reachable = {} assert Y == X, "need a square matrix"
breach = {} period = X
center = slice(S//2*Y, (S//2+1)*Y), slice(S//2*X, (S//2+1)*X) tiles = 1
left = slice(S//2*Y, (S//2+1)*Y), slice((S//2-1)*X, S//2*X)
right = slice(S//2*Y, (S//2+1)*Y), slice((S//2+1)*X, (S//2+2)*X)
up = slice((S//2-1)*Y, (S//2 )*Y), slice(S//2*X, (S//2+1)*X)
down = slice((S//2+1)*Y, (S//2+2)*Y), slice(S//2*X, (S//2+1)*X)
dirs = [left,right,up,down]
for i in range(Y):
for j in range(X):
if i in (0,Y-1) or j in (0,X-1) or (i,j) == start:
fill = numpy.zeros((Y*S,X*S+1), dtype='uint8')
fill[S//2*Y + i, S//2*X + j] = 1
reachable[i,j] = [fill]
found = [0,0,0,0]
while True:
s0 = fill
s1 = step(mask, s0)
s2 = step(mask, s1)
fill = s2
n1 = len(reachable[i,j])
n2 = len(reachable[i,j])+1
reachable[i,j].append(s1)
reachable[i,j].append(s2)
for d in range(4):
if not found[d]:
if s1[dirs[d]].any():
found[d] = n1
elif s2[dirs[d]].any():
found[d] = n2
if (s0 == s2)[center].all():
break
breach[i,j] = found
print(i,j,len(reachable[i,j]), found)
#draw(mask, fill)
for (i,j),fills in reachable.items(): original_mask = mask
fills = reachable[i,j]
when = breach[i,j]
for d in range(4):
if when[d]:
f = fills[when[d]][dirs[d]]
num_breach_points = sum(f.ravel())
assert num_breach_points > 0
print(i,j,d, num_breach_points == 1, num_breach_points)
if num_breach_points > 1:
draw(mask, fills[when[d]])
return
# maximum number of steps for a tile to become completely reachable
M = max(len(r) for r in reachable.values())
states = {}
active = {}
reachable[start]
states = [((0,0),[(0,start)])]
for iters in range(target_steps):
assert fill.any()
fill = step(mask, fill)
fill = step(mask, fill)
#print("\033[2J") # clear screen
#draw(mask, fill)
for u in range(S):
for v in range(S):
small = fill[Y*u:Y*(u+1), X*v:X*(v+1)]
#if (u,v) == (1,1): print(small)
b = small.tobytes()
super[u,v] = cache.setdefault(b, len(cache))
print("========")
print(super)
print(flush=True)
#time.sleep(.1)
# look for symmetries
def look():
for u in range(S):
for v in range(u,S):
if super[u,v] != super[v,u]:
return False
return True
#print(fill.tobytes())
def sequence(fill, mask, target_steps, period):
prev = [0] prev = [0]
c1, d1 = 0, 0 diffs = []
c2, d2 = 0, 0 for i in range(max_steps):
prev2 = [] # expand the map if necessary
for i in range(target_steps): if fill[0].any() or fill[-1].any() or fill[:,0].any() or fill[:,-1].any():
draw(mask,fill)
print("expanding...")
tiles += 2
mask = numpy.tile(original_mask, (tiles,tiles))
fill = numpy.pad(fill, [(Y,Y), (X,X)])
# take one more step and count the number of reachable squares
fill = step(mask, fill) fill = step(mask, fill)
#fill = step(mask, fill)
n = int(fill.sum()) n = int(fill.sum())
#if len(prev) > period:
# c1, d1 = d1, n - prev[-period] # look for patterns
# c2, d2 = d2, d1 - c1 # although the number of squares is somewhat unpreditable from step
# prev2.append(d2) # to step (due to the maze-like structure of the mask), the fact that
# the mask repeats in tiles (and the fact that there are unobstructed
# pathways in the orthogonal and diagonal directions) means that, in
# the long run, the flood fill will even out and -importantly- it should
# have some recognizable pattern every N steps (where N is the period
# of the tiling - 11 in the sample, 131 in the input). this is because
# we enter new tiles every N steps, and although it's hard to predict
# exactly how many of the squares in each tile we'll have visited,
# it should be the same number in every tile (or rather, there should
# be some small set of repeated tile-states, and we should be able to
# predict how many of each tile-state there will be).
#
# SO the first step is to get the difference between the current
# number of reachable squares and the number N steps ago.
#
# d1(i) = f(i) - f(i - N)
#
# we then have to discover some pattern in that sequence.
# we know the number of reachable squares will grow roughly as the
# square of the number of steps (because the map is 2D) so
# we should be looking for a quadratic relation.
# we can use second-order differences (see day 9) to do that.
# d1 is already a first-order difference, so take the difference
# between d1s to get a second-order difference. if our assumption is
# correct, then d1 should be a linear sequence and d2 should be a
# constant.
#
# d2(i) = d1(i) - d1(i-N)
# = (f(i) - f(i-N)) - (f(i-N) - f(i-N-N))
#
#
# there may be some unstability at the beginning of the simulation
# so we need to wait until the d2 values for every step in the period
# all agree.
#
# once it settles down, this gives us a set of N (11, 131, whatever)
# equations we can use to predict the number of squares after any
# future number of steps
#
d2 = 0
if len(prev) >= 2*period: if len(prev) >= 2*period:
# find the second differece # find the second differece
d2 = (n - prev[-period]) - (prev[-period] - prev[-2*period]) d2 = (n - prev[-period]) - (prev[-period] - prev[-2*period])
prev2.append(d2) diffs.append(d2)
prev.append(n) prev.append(n)
print(i,n,d1,d2,sep="\t",flush=True) print(i, n, d2, sep="\t", flush=True)
if len(prev2) > period and len(set(prev2[-period:])) == 1: if len(diffs) > period and all_same_value(diffs[-period:]):
print("gotcha!") print("gotcha!")
return prev, prev2[-1] return prev, period, diffs[-1]
break assert False, "failed to find a stable pattern"
if len(prev2) > period*2 and prev2[-period*2:-period] == prev2[-period:]: return prev, period, None
print("gotcha!")
break def all_same_value(list):
if len(prev2) > period*3 and prev2[-period*3:-period] == prev2[-period*2:]: if len(list) < 1:
print("gotcha!") return False
break x = list[0]
if fill[0].any() or fill[-1].any() or fill[:,0].any() or fill[:,-1].any(): return all(x == y for y in list)
draw(mask,fill)
break
return
def extrapolate(n, values, period, d2): def extrapolate(n, values, period, d2):
if n < len(values): if n < len(values):
@ -207,8 +169,6 @@ def extrapolate(n, values, period, d2):
def step(mask, old): def step(mask, old):
# flood fill # flood fill
# note that the provided map has a 1-tile border of empty spaces
# which we will use to our advantage
#draw(fill) #draw(fill)
fill = numpy.zeros(old.shape, dtype='uint8') fill = numpy.zeros(old.shape, dtype='uint8')
y,x = fill.shape y,x = fill.shape
@ -217,7 +177,6 @@ def step(mask, old):
f = numpy.roll(f, 1) | numpy.roll(f, -1) f = numpy.roll(f, 1) | numpy.roll(f, -1)
if i > 0: f |= (old[i-1] == 1) if i > 0: f |= (old[i-1] == 1)
if i < y-1: f |= (old[i+1] == 1) if i < y-1: f |= (old[i+1] == 1)
f[-1] = False
f &= (mask[i] == 0) f &= (mask[i] == 0)
#print(old, f) #print(old, f)
if f.any(): if f.any():
@ -227,4 +186,6 @@ def step(mask, old):
return fill return fill
solve(grid) map = read_map(sys.stdin)
solve(map)
solve2(map)