day 6 fancy solution + cleanup
parent
b480088127
commit
ed146f7fe1
39
day06/sol.py
39
day06/sol.py
|
@ -1,3 +1,4 @@
|
|||
from math import sqrt
|
||||
sample = {
|
||||
"time": [7, 15, 30],
|
||||
"distance": [9, 40, 200],
|
||||
|
@ -21,10 +22,45 @@ def solve(data):
|
|||
d = (t-i)*v
|
||||
if d > best:
|
||||
ways += 1
|
||||
|
||||
part1 *= ways
|
||||
|
||||
return part1
|
||||
|
||||
|
||||
def fancy_solve(data):
|
||||
time = data["time"]
|
||||
dist = data["distance"]
|
||||
|
||||
for t, best in zip(time, dist):
|
||||
# the distance traveled if the boat is released at time i
|
||||
# is equal to (t-i)*i
|
||||
# we want to know the range of values of i for which this
|
||||
# exceeds the best time
|
||||
# (t-i)*i > best
|
||||
# a little rearranging gets us the quadratic equation
|
||||
# i^2 - ti + best <= 0
|
||||
# which we can determine the crossing points for
|
||||
# using the quadratic formula (the good one, not the
|
||||
# one you learned in school)
|
||||
h = t/2
|
||||
s = sqrt(h*h - best)
|
||||
#print(h-s, h+s)
|
||||
|
||||
# in general these will not be at integer values,
|
||||
# so we probe the floor and ceiling of each crossing
|
||||
# point to determine exactly where the condition is met
|
||||
a = int(h-s)
|
||||
b = int(h+s)
|
||||
if (t-a)*a <= best:
|
||||
a += 1
|
||||
if (t-b)*b > best:
|
||||
b += 1
|
||||
|
||||
ways = b - a
|
||||
return ways
|
||||
|
||||
|
||||
print(solve(sample))
|
||||
print(solve(input))
|
||||
|
||||
|
@ -33,6 +69,7 @@ def part2(data):
|
|||
"distance": [int("".join(str(x) for x in data["distance"]))]}
|
||||
|
||||
print(solve(part2(sample)))
|
||||
print(solve(part2(input)))
|
||||
print(fancy_solve(part2(sample)))
|
||||
print(fancy_solve(part2(input)))
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue