day 7 optimization
instead of lists, construct a tower of nested generators. i think this is equivalent to a recursive backtracking solution. since the input doesn't contain 0 we can check for <goal in the intermediate layers, and ==goal at the end.main
parent
9e083f00f9
commit
7373859412
43
day07/sol.py
43
day07/sol.py
|
@ -6,38 +6,29 @@ def solve(file):
|
|||
goal = int(nums[0].rstrip(":"))
|
||||
nums = [int(x) for x in nums[1:]]
|
||||
|
||||
if viable(goal, nums):
|
||||
if viable(goal, nums, lambda n,x: (n*x, n+x)):
|
||||
t += goal
|
||||
elif viable2(goal, nums):
|
||||
elif viable(goal, nums, lambda n,x: (n*x, n+x, int(str(n)+str(x)))):
|
||||
t2 += goal
|
||||
print(t)
|
||||
print(t+t2)
|
||||
|
||||
def viable(goal, nums):
|
||||
def viable(goal, nums, combine):
|
||||
candidates = [nums[0]]
|
||||
next = []
|
||||
for x in nums[1:]:
|
||||
for n in candidates:
|
||||
for m in n*x, n+x:
|
||||
if m <= goal:
|
||||
next.append(m)
|
||||
next, candidates = candidates, next
|
||||
next.clear()
|
||||
#print(goal, nums, candidates, goal in candidates)
|
||||
return goal in candidates
|
||||
|
||||
def viable2(goal, nums):
|
||||
candidates = [nums[0]]
|
||||
next = []
|
||||
for x in nums[1:]:
|
||||
for n in candidates:
|
||||
for m in n*x, n+x, int(str(n)+str(x)):
|
||||
if m <= goal: #and m not in next:
|
||||
next.append(m)
|
||||
next, candidates = candidates, next
|
||||
next.clear()
|
||||
print(goal, nums, len(candidates), goal in candidates)
|
||||
return goal in candidates
|
||||
for x in nums[1:-1]:
|
||||
candidates = (lambda C, x: (
|
||||
m
|
||||
for n in C
|
||||
for m in combine(n,x)
|
||||
if m < goal
|
||||
))(candidates, x)
|
||||
#candidates = list(candidates); print(len(candidates))
|
||||
x = nums[-1]
|
||||
for n in candidates:
|
||||
for m in combine(n,x):
|
||||
if m == goal:
|
||||
return True
|
||||
return False
|
||||
|
||||
solve(open('sample1.in'))
|
||||
solve(open('input'))
|
||||
|
|
Loading…
Reference in New Issue