from heapq import heappush, heappop def search(start, is_goal, neighbors, heuristic=None, worst=None): if heuristic == None: def heuristic(x): return 0 if not callable(is_goal): goal = is_goal def is_goal(this): return this == goal if not isinstance(start, list): start = [start] i = 0 # tiebreaker q = [] for s in start: i += 1 heappush(q, (heuristic(s), i, s, None)) done = {} if worst: best_worst = min(worst(s) for s in start) while q: z, _, this, prev = heappop(q) if this in done: continue cost_so_far = z - heuristic(this) #print(this,z, cost_so_far) done[this] = (cost_so_far, prev) if is_goal(this): #print("astar: visited", len(done), "nodes") #print("astar: pending", len(q), "nodes") # reconsruct the path n = this path = [] while n is not None: path.append(n) _, n = done[n] path.reverse() return cost_so_far, this, path for c, n in neighbors(this): c = cost_so_far + c if n not in done or c < done[n][0]: h = heuristic(n) if worst: if c+h > best_worst: # if the best possible cost for this node # is worse than the lowest worst-case cost we've seen # then don't even bother exploring it continue w = worst(n) if c+w < best_worst: best_worst = c+w i += 1 heappush(q, (c+h, i, n, this)) return float('inf'), None, [] def test(): data = [ "aabqponm", "abcryxxl", "accszzxk", "acctuvwj", "abdefghi", ] #data = [ # "aabbaaba", # "abcbaaba", # "accabcbb", # "accbbbba", # "abbbabab", #] start = (0,0) goal = (5,2) def get(x,y): return ord(data[y][x]) def neighbors(src): x,y = src here = get(x,y) n = [] def push(x,y): if 0 <= y < len(data): if 0 <= x < len(data[y]): if get(x,y) <= here+1: n.append((1, (x,y))) push(x-1, y) push(x+1,y) push(x, y-1) push(x, y+1) return n def heuristic(n): return abs(goal[0] - n[0]) + abs(goal[1] - n[1]) c, _, path = search(start, goal, neighbors, heuristic) print(*data, sep="\n") print(*path, sep="\n") assert c == 31, c if __name__ == '__main__': test()