day 10 part 2 progress
This commit is contained in:
parent
4d69df2df2
commit
5fd80e56d8
138
day10/sol2.go
138
day10/sol2.go
@ -24,6 +24,14 @@ func main() {
|
||||
solve("input")
|
||||
}
|
||||
|
||||
// Brilliant insight from a redditor:
|
||||
// suppose we only want to match the parity of the required joltages.
|
||||
// we can use our solution for part 1 to find the minimum number of button presses
|
||||
// to make that happen. now, consider what happens if we press a button twice:
|
||||
// it won't change the parity at all, only add 2 to some joltages. ok.
|
||||
// take the 2nd bit of each joltage. what's the minimum number of double-presses
|
||||
// required to match that pattern? and so on.
|
||||
|
||||
func solve(filename string) {
|
||||
input, err := os.Open(filename)
|
||||
check(err)
|
||||
@ -35,14 +43,19 @@ func solve(filename string) {
|
||||
line := scanner.Text()
|
||||
parts := strings.Fields(line)
|
||||
parts = parts[1:]
|
||||
var jolts []Jolts
|
||||
var buts []uint32
|
||||
var target Jolts
|
||||
for _, p := range parts {
|
||||
j, err := parseJolt(p)
|
||||
check(err)
|
||||
jolts = append(jolts, j)
|
||||
if p[0] == '{' {
|
||||
target = j
|
||||
} else {
|
||||
buts = append(buts, j.uint32())
|
||||
}
|
||||
}
|
||||
fmt.Printf("%v %v\n", jolts, parts)
|
||||
n := best(jolts[len(jolts)-1], jolts[:len(jolts)-1])
|
||||
fmt.Printf("%v %b %v\n", target, buts, parts)
|
||||
n := solveJolts(target, buts)
|
||||
fmt.Printf("%s = %v\n", line, n)
|
||||
total += n
|
||||
//fmt.Println(n)
|
||||
@ -89,62 +102,89 @@ func parseJoltByValue(s string) (Jolts, error) {
|
||||
return j, nil
|
||||
}
|
||||
|
||||
// An CostHeap is a min-heap of ints.
|
||||
type CostHeap struct {
|
||||
heap []Jolts
|
||||
cost map[Jolts]int
|
||||
func (j *Jolts) uint32() (u uint32) {
|
||||
for i, v := range j {
|
||||
if v != 0 {
|
||||
u |= uint32(1) << i
|
||||
}
|
||||
}
|
||||
return u
|
||||
}
|
||||
|
||||
func (h *CostHeap) Len() int { return len(h.heap) }
|
||||
func (h *CostHeap) Less(i, j int) bool { return h.cost[h.heap[i]] < h.cost[h.heap[j]] }
|
||||
func (h *CostHeap) Swap(i, j int) { h.heap[i], h.heap[j] = h.heap[j], h.heap[i] }
|
||||
|
||||
func (h *CostHeap) Push(x any) {
|
||||
// Push and Pop use pointer receivers because they modify the slice's length,
|
||||
// not just its contents.
|
||||
h.heap = append(h.heap, x.(Jolts))
|
||||
func (j Jolts) Sub(m uint32, value int) Jolts {
|
||||
for i := range j {
|
||||
if m>>i&1 != 0 {
|
||||
j[i] -= int16(value)
|
||||
}
|
||||
}
|
||||
return j
|
||||
}
|
||||
|
||||
func (h *CostHeap) Pop() any {
|
||||
old := h.heap
|
||||
n := len(old)
|
||||
x := old[n-1]
|
||||
h.heap = old[0 : n-1]
|
||||
return x
|
||||
func (j Jolts) Valid() bool {
|
||||
for i := range j {
|
||||
if j[i] < 0 {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// it doesn't matter what order we push the buttons in --
|
||||
// only how many times we push each one.
|
||||
// TODO: this isn't quite enough. we need to know not only how many button presses
|
||||
// a mask can be solved in, but also *the specific buttons* -- because even though
|
||||
// each button is pressed at most once, two buttons can be connected to the same
|
||||
// output so the joltages can be between like 0-10. this needs to be subtracted
|
||||
// from the target, and two different button patterns can have different effects
|
||||
// on the target.
|
||||
//
|
||||
// the good news is that we can cache and reuse the cost map computed in best(),
|
||||
// since it depends only on the button wiring. all that's left after that is a
|
||||
// graph search through the state space, using masks to prune each level.
|
||||
|
||||
func best(target Jolts, pool []Jolts) int {
|
||||
var cost = make(map[Jolts]int)
|
||||
var states []Jolts
|
||||
states = append(states, Jolts{})
|
||||
cost[Jolts{}] = 0
|
||||
for pi, p := range pool {
|
||||
func solveJolts(target Jolts, pool []uint32) int {
|
||||
var bits uint32
|
||||
for _, x := range target {
|
||||
bits |= uint32(x)
|
||||
}
|
||||
var answer int
|
||||
for bit := uint(0); bits>>bit > 0; bit++ {
|
||||
var mask uint32
|
||||
for i := range target {
|
||||
mask |= uint32(target[i]) >> bit << i
|
||||
}
|
||||
|
||||
if mask == 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
n := best(mask, pool)
|
||||
answer += n << bit
|
||||
|
||||
//for i, p := range pool {
|
||||
// if mask>>i&1 != 0 {
|
||||
// target.Sub(p, 1)
|
||||
// }
|
||||
//}
|
||||
}
|
||||
return answer
|
||||
}
|
||||
|
||||
func best(target uint32, pool []uint32) int {
|
||||
var cost = make(map[uint32]int)
|
||||
var states = []uint32{0}
|
||||
cost[0] = 0
|
||||
for _, p := range pool {
|
||||
// enumerate all the states that can be reached by toggling button p
|
||||
queue := states
|
||||
fmt.Print(pi, len(states), len(queue))
|
||||
for _, s := range queue {
|
||||
here:
|
||||
for t, c := s, cost[s]; ; {
|
||||
for i, v := range p {
|
||||
t[i] += v
|
||||
if t[i] > target[i] {
|
||||
// blown target, cut path
|
||||
break here
|
||||
}
|
||||
}
|
||||
c += 1
|
||||
for _, s := range states {
|
||||
t := s ^ p
|
||||
c := cost[t] + 1
|
||||
|
||||
if cost_t, ok := cost[t]; ok {
|
||||
if c < cost_t {
|
||||
cost[t] = c
|
||||
}
|
||||
} else {
|
||||
if cost_t, ok := cost[t]; ok {
|
||||
if c < cost_t {
|
||||
cost[t] = c
|
||||
states = append(states, t)
|
||||
}
|
||||
} else {
|
||||
cost[t] = c
|
||||
states = append(states, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -15,9 +15,27 @@ def solve(input):
|
||||
M = sympy.Matrix(matrix + [target]).T
|
||||
#print(repr(M))
|
||||
S, pivots = M.rref()
|
||||
if len(pivots) < BTNS:
|
||||
if len(pivots) == BTNS:
|
||||
# solved
|
||||
presses = S.col(-1)
|
||||
print("*", target, presses.T, sum(presses))
|
||||
part2 += sum(presses)
|
||||
else:
|
||||
# not solved
|
||||
print(repr(S))
|
||||
# the system of equations is underdetermined, either because
|
||||
# we started with too few equations or because some of them were
|
||||
# not linearly independent.
|
||||
# the upshot is that we have one or more free variables
|
||||
# (in practice 1-3 free variables) so if we just iterate
|
||||
# through all legal values for those variables we should
|
||||
# be able to find a solution?
|
||||
# unfortunately i am still running into some unsolveable cases
|
||||
# and i'm not sure why.
|
||||
|
||||
#if BTNS - len(pivots) >= 3:
|
||||
# print(repr(S))
|
||||
#continue
|
||||
|
||||
coords = []
|
||||
limits = []
|
||||
extra_rows = []
|
||||
@ -46,10 +64,6 @@ def solve(input):
|
||||
part2 += min(totals)
|
||||
else:
|
||||
print("uhoh", target)
|
||||
else:
|
||||
presses = S.col(-1)
|
||||
print("*", target, presses.T, sum(presses))
|
||||
part2 += sum(presses)
|
||||
print(part2)
|
||||
#print(less, greater)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user