Added the rest of the regular 3-d polyhedra

broken-cursed-links
Mike Lynch 2024-04-25 12:38:40 +10:00
parent 78ebb381ee
commit f79a90e0d9
1 changed files with 147 additions and 0 deletions

View File

@ -755,8 +755,155 @@ export const dodecahedron = () => {
} }
export const tetrahedron = () => {
const r2 = Math.sqrt(2);
const r3 = Math.sqrt(3);
return {
name: 'Tetrahedron',
nodes: [
{id:1, label: 1, x: 2 * r2 / 3, y: 0, z: -1/3, w: 0 },
{id:2, label: 2, x: -r2 / 3, y: r2 / r3, z: -1/3, w: 0 },
{id:3, label: 3, x: -r2 / 3, y: -r2 / r3, z: -1/3, w: 0 },
{id:4, label: 4, x: 0, y: 0, z: 1, w: 0 },
],
links: [
{ id:1, source:1, target: 2},
{ id:2, source:1, target: 3},
{ id:3, source:1, target: 4},
{ id:4, source:2, target: 3},
{ id:5, source:2, target: 4},
{ id:6, source:3, target: 4},
],
geometry: {
node_size: 0.02,
link_size: 0.02
},
options: [ { name: '--' }],
description: `The simplest three-dimensional polytope, consisting of four triangles joined at six edges. The 5-cell is its four-dimensional analogue.`,
};
};
export const octahedron = () => {
const nodes = [
{id: 1, label: 1, x: 1, y: 0, z: 0, w: 0},
{id: 2, label: 1, x: -1, y: 0, z: 0, w: 0},
{id: 3, label: 2, x: 0, y: 1, z: 0, w: 0},
{id: 4, label: 2, x: 0, y: -1, z: 0, w: 0},
{id: 5, label: 3, x: 0, y: 0, z: 1, w: 0},
{id: 6, label: 3, x: 0, y: 0, z: -1, w: 0},
];
const links = [
{id:1, source: 1, target: 3},
{id:2, source: 1, target: 4},
{id:3, source: 1, target: 5},
{id:4, source: 1, target: 6},
{id:5, source: 2, target: 3},
{id:6, source: 2, target: 4},
{id:7, source: 2, target: 5},
{id:8, source: 2, target: 6},
{id:9, source: 3, target: 5},
{id:10, source: 3, target: 6},
{id:11, source: 4, target: 5},
{id:12, source: 4, target: 6},
]
links.map((l) => { l.label = 0 });
return {
name: 'Octahedron',
nodes: nodes,
links: links,
geometry: {
node_size: 0.02,
link_size: 0.02
},
options: [ { name: '--' }],
description: `The three-dimensional cross-polytope, the 16-cell is its four-dimensional analogue.`,
};
}
export const cube = () => {
const nodes = [
{id: 1, label: 1, x: 1, y: 1, z: 1, w: 0},
{id: 2, label: 2, x: -1, y: 1, z: 1, w: 0},
{id: 3, label: 2, x: 1, y: -1, z: 1, w: 0},
{id: 4, label: 1, x: -1, y: -1, z: 1, w: 0},
{id: 5, label: 2, x: 1, y: 1, z: -1, w: 0},
{id: 6, label: 1, x: -1, y: 1, z: -1, w: 0},
{id: 7, label: 1, x: 1, y: -1, z: -1, w: 0},
{id: 8, label: 2, x: -1, y: -1, z: -1, w: 0},
];
scale_nodes(nodes, 1/Math.sqrt(3));
const links = auto_detect_edges(nodes, 3);
links.map((l) => { l.label = 0 });
return {
name: 'Cube',
nodes: nodes,
links: links,
geometry: {
node_size: 0.02,
link_size: 0.02
},
options: [ { name: '--' }],
description: `The three-dimensional measure polytope, the tesseract is its four-dimensional analogue.`,
};
}
function make_icosahedron_vertices() {
const phi = 0.5 * (1 + Math.sqrt(5));
const nodes = [
{ x: 0, y: 1, z: phi, w: 0, label: 1 },
{ x: 0, y: -1, z: phi, w: 0, label: 1 },
{ x: 0, y: 1, z: -phi, w: 0, label: 1 },
{ x: 0, y: -1, z: -phi, w: 0, label: 1 },
{ x: 1, y: phi, z: 0, w: 0, label: 2 },
{ x: -1, y: phi, z: 0, w: 0, label: 2 },
{ x: 1, y: -phi, z: 0, w: 0, label: 2 },
{ x: -1, y: -phi, z: 0, w: 0, label: 2 },
{ x: phi, y: 0, z: 1, w: 0, label: 3},
{ x: phi, y: 0, z: -1, w: 0, label: 3},
{ x: -phi, y: 0, z: 1, w: 0, label: 3},
{ x: -phi, y: 0, z: -1, w: 0, label: 3},
];
scale_nodes(nodes, 1/Math.sqrt((5 + Math.sqrt(5)) / 2));
index_nodes(nodes);
return nodes;
}
export const icosahedron = () => {
const nodes = make_icosahedron_vertices();
const links = auto_detect_edges(nodes, 5);
links.map((l) => l.label = 0);
return {
name: 'Icosahedron',
nodes: nodes,
links: links,
geometry: {
node_size: 0.02,
link_size: 0.02
},
options: [
{ name: "--"},
],
description: `The icosahedron is a twenty-sided polyhedron and is dual to the dodecahedron. Its four-dimensional analogue is the 600-cell.`
}
}
export const build_all = () => { export const build_all = () => {
return [ return [
tetrahedron(),
octahedron(),
cube(),
icosahedron(),
dodecahedron(), dodecahedron(),
cell5(), cell5(),
cell16(), cell16(),