Compare commits
18 Commits
61c44b283c
...
d84cac47a0
Author | SHA1 | Date |
---|---|---|
magical | d84cac47a0 | |
magical | 318adbd307 | |
magical | a940dff830 | |
magical | c5d4f796e0 | |
magical | d3d175a038 | |
magical | 7c2e376938 | |
magical | 219cde7d0a | |
magical | c291508b82 | |
magical | dae0597628 | |
magical | fd8de9c7c2 | |
magical | 3dff6a2247 | |
magical | efd7f887b8 | |
magical | 2635e69315 | |
magical | f805d9d373 | |
magical | 52a2184a3c | |
magical | f3b38a3ece | |
magical | 7178a11eee | |
magical | 9165dd7d86 |
|
@ -27,3 +27,18 @@
|
||||||
/day17/sample2.in
|
/day17/sample2.in
|
||||||
/day18/sample2.in
|
/day18/sample2.in
|
||||||
/day18/sample3.in
|
/day18/sample3.in
|
||||||
|
/day20/sample2.in
|
||||||
|
/day20/sample4.in
|
||||||
|
/day20/sample5.in
|
||||||
|
/day20/sample6.in
|
||||||
|
/day20/sample7.in
|
||||||
|
/day21/sample2.in
|
||||||
|
/day21/sample3.in
|
||||||
|
/day21/sample4.in
|
||||||
|
/day21/sample5.in
|
||||||
|
/day21/sample6.in
|
||||||
|
/day22/sample2.in
|
||||||
|
/day22/sample3.in
|
||||||
|
/day22/sample4.in
|
||||||
|
/day22/sample5.in
|
||||||
|
/day22/sample6.in
|
||||||
|
|
13
day17/sol.py
13
day17/sol.py
|
@ -11,12 +11,22 @@ def solve(map,part=1):
|
||||||
goal = (len(map)-1,len(map[-1])-1)
|
goal = (len(map)-1,len(map[-1])-1)
|
||||||
def is_goal(x):
|
def is_goal(x):
|
||||||
return x[:2] == goal
|
return x[:2] == goal
|
||||||
|
def heuristic(state):
|
||||||
|
# manhattan distance. this is correct because the cost
|
||||||
|
# at every point is >= 1 and we can only move one square
|
||||||
|
# at a time NSEW.
|
||||||
|
if part == 2 and state[3] < 4:
|
||||||
|
y,x,d,count = state
|
||||||
|
# account for forced moves away from the goal
|
||||||
|
if d[0] < 0 or d[1] < 0:
|
||||||
|
return (4-count)*2 + abs(y-goal[0]) + abs(x-goal[1])
|
||||||
|
return abs(state[0]-goal[0]) + abs(state[1]-goal[1])
|
||||||
def neighbors(state):
|
def neighbors(state):
|
||||||
y,x,dir,count = state
|
y,x,dir,count = state
|
||||||
next = []
|
next = []
|
||||||
def go(dx,dy):
|
def go(dx,dy):
|
||||||
if (-dx,-dy) == dir:
|
if (-dx,-dy) == dir:
|
||||||
# can't turn around
|
# no turning back
|
||||||
return
|
return
|
||||||
newx = x + dx
|
newx = x + dx
|
||||||
newy = y + dy
|
newy = y + dy
|
||||||
|
@ -40,6 +50,7 @@ def solve(map,part=1):
|
||||||
go(0,+1)
|
go(0,+1)
|
||||||
return next
|
return next
|
||||||
|
|
||||||
|
# turns out it's actually faster to not use the heuristic, so don't
|
||||||
cost, node, path = astar.search(start, is_goal, neighbors)
|
cost, node, path = astar.search(start, is_goal, neighbors)
|
||||||
print(cost)
|
print(cost)
|
||||||
print([(x,y) for (y,x,_,_) in path])
|
print([(x,y) for (y,x,_,_) in path])
|
||||||
|
|
|
@ -0,0 +1,58 @@
|
||||||
|
%jx -> rt, rs
|
||||||
|
&cc -> cd, fc, qr, nl, gk, zr
|
||||||
|
%qs -> cl, rs
|
||||||
|
%zr -> cq
|
||||||
|
%mx -> nr, pm
|
||||||
|
%mj -> qr, cc
|
||||||
|
%cj -> cc, nt
|
||||||
|
%jv -> sp
|
||||||
|
%dj -> bd, zc
|
||||||
|
%kt -> lt
|
||||||
|
broadcaster -> gz, xg, cd, sg
|
||||||
|
&dn -> rx
|
||||||
|
%br -> nf, bd
|
||||||
|
%cd -> cc, nl
|
||||||
|
%zc -> jq, bd
|
||||||
|
%xg -> cf, pm
|
||||||
|
%nz -> gm, bd
|
||||||
|
&dd -> dn
|
||||||
|
%nb -> sl
|
||||||
|
&pm -> kt, xg, xp, jv, sp
|
||||||
|
&fh -> dn
|
||||||
|
%rt -> qq
|
||||||
|
%qq -> rs, hd
|
||||||
|
%hd -> qs, rs
|
||||||
|
&xp -> dn
|
||||||
|
%pj -> cc, mj
|
||||||
|
%gz -> bd, kb
|
||||||
|
%zd -> jv, pm
|
||||||
|
%cq -> cj, cc
|
||||||
|
%qr -> gk
|
||||||
|
%ng -> jk, bd
|
||||||
|
%kb -> bd, sv
|
||||||
|
%cl -> zx, rs
|
||||||
|
%gj -> zd, pm
|
||||||
|
%sl -> kx
|
||||||
|
%sv -> br
|
||||||
|
%nf -> bd, nz
|
||||||
|
%zx -> rs
|
||||||
|
%nt -> mn, cc
|
||||||
|
%rh -> nb, rs
|
||||||
|
%gk -> ln
|
||||||
|
&bd -> gm, gz, fh, sv
|
||||||
|
%jq -> ng, bd
|
||||||
|
%sp -> pc
|
||||||
|
%sg -> rs, rh
|
||||||
|
%kx -> jx
|
||||||
|
&fc -> dn
|
||||||
|
%cf -> gj, pm
|
||||||
|
%pc -> kt, pm
|
||||||
|
%jk -> bd
|
||||||
|
%vf -> pm
|
||||||
|
&rs -> sg, dd, sl, kx, nb, rt
|
||||||
|
%nr -> vf, pm
|
||||||
|
%ln -> zr, cc
|
||||||
|
%lt -> pm, mx
|
||||||
|
%gm -> dj
|
||||||
|
%nl -> pj
|
||||||
|
%mn -> cc
|
|
@ -0,0 +1,5 @@
|
||||||
|
broadcaster -> a, b, c
|
||||||
|
%a -> b
|
||||||
|
%b -> c
|
||||||
|
%c -> inv
|
||||||
|
&inv -> a
|
|
@ -0,0 +1,5 @@
|
||||||
|
broadcaster -> a
|
||||||
|
%a -> inv, con
|
||||||
|
&inv -> b
|
||||||
|
%b -> con
|
||||||
|
&con -> output
|
|
@ -0,0 +1,153 @@
|
||||||
|
#!/usr/bin/env tclsh
|
||||||
|
source ../prelude.tcl
|
||||||
|
|
||||||
|
proc read-input input {
|
||||||
|
global next
|
||||||
|
global type
|
||||||
|
global flip
|
||||||
|
global conj
|
||||||
|
global when
|
||||||
|
while {[gets $input line] >= 0} {
|
||||||
|
# oops
|
||||||
|
set line [replace $line ">" > "&" &]
|
||||||
|
#puts $line
|
||||||
|
must_regexp {^([%&]?)([a-z]+) -> (.*)$} $line _ sigil name to
|
||||||
|
set next($name) [replace $to "," ""]
|
||||||
|
if {$sigil eq ""} {
|
||||||
|
set type($name) ""
|
||||||
|
} elseif {$sigil eq "%"} {
|
||||||
|
set type($name) "flip"
|
||||||
|
set flip($name) 0
|
||||||
|
} elseif {$sigil eq "&"} {
|
||||||
|
set type($name) "conj"
|
||||||
|
set conj($name) [dict create]
|
||||||
|
set when($name) [dict create]
|
||||||
|
} else {
|
||||||
|
error "unknown sigil $sigil"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
foreach n [array names type] {
|
||||||
|
foreach to $next($n) {
|
||||||
|
if {![info exists type($to)]} {
|
||||||
|
set type($to) ""
|
||||||
|
}
|
||||||
|
if {$type($to) eq "conj"} {
|
||||||
|
dict set conj($to) $n 0
|
||||||
|
dict set when($to) $n 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
proc pulse {init i {debug 0}} {
|
||||||
|
global next
|
||||||
|
global type
|
||||||
|
global flip
|
||||||
|
global conj
|
||||||
|
global count
|
||||||
|
global when
|
||||||
|
|
||||||
|
set n $init
|
||||||
|
set pulses {}
|
||||||
|
|
||||||
|
#puts [array get next]
|
||||||
|
|
||||||
|
incr count(0) ;# button
|
||||||
|
foreach to $next($init) {
|
||||||
|
#incr count(0)
|
||||||
|
lappend pulses $init $to 0
|
||||||
|
}
|
||||||
|
|
||||||
|
while {[llen $pulses]} {
|
||||||
|
if {$debug} {
|
||||||
|
puts "#[llen $pulses] : $pulses"
|
||||||
|
}
|
||||||
|
set copy $pulses
|
||||||
|
set pulses {}
|
||||||
|
foreach {from n value} $copy {
|
||||||
|
incr count($value)
|
||||||
|
if {$n eq "rx" && $value == 0} {
|
||||||
|
global solved
|
||||||
|
set solved 1
|
||||||
|
}
|
||||||
|
switch $type($n) {
|
||||||
|
flip {
|
||||||
|
if {$value == 0} {
|
||||||
|
set flip($n) [expr {!$flip($n)}]
|
||||||
|
foreach to $next($n) {
|
||||||
|
lappend pulses $n $to $flip($n)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
conj {
|
||||||
|
dict set conj($n) $from $value
|
||||||
|
# remember the last time we saw a high bit from each input
|
||||||
|
if {$value} {
|
||||||
|
dict set when($n) $from $i
|
||||||
|
}
|
||||||
|
set all 1
|
||||||
|
foreach v [dict values $conj($n)] {
|
||||||
|
if {!$v} {
|
||||||
|
set all 0
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
set send [expr {!$all}]
|
||||||
|
foreach to $next($n) {
|
||||||
|
lappend pulses $n $to $send
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#puts $count(0)
|
||||||
|
#puts $count(1)
|
||||||
|
}
|
||||||
|
|
||||||
|
proc solve input {
|
||||||
|
read-input $input
|
||||||
|
|
||||||
|
global count
|
||||||
|
#puts [array get next]
|
||||||
|
#array set count {0 0 1 0}
|
||||||
|
set count(0) 0
|
||||||
|
set count(1) 0
|
||||||
|
|
||||||
|
global when
|
||||||
|
for {set i 1} {$i <= 1000} {incr i} {
|
||||||
|
pulse broadcaster $i
|
||||||
|
}
|
||||||
|
|
||||||
|
puts "$count(0)"
|
||||||
|
puts $count(1)
|
||||||
|
puts [expr {$count(0) * $count(1)}]
|
||||||
|
|
||||||
|
global type
|
||||||
|
if {![info exists type(rx)]} return
|
||||||
|
|
||||||
|
set last $when(dn)
|
||||||
|
while {1} {
|
||||||
|
pulse broadcaster $i
|
||||||
|
if {$when(dn) ne $last} {
|
||||||
|
# rx is connected to a conj of 4 circuits
|
||||||
|
# which each emit 1 high pulse on a periodic cycle.
|
||||||
|
#
|
||||||
|
# this could be more difficult but it turns out
|
||||||
|
# that the step when the first output is produced
|
||||||
|
# is also equal to the cycle length,
|
||||||
|
# and all the cycles are a prime number so we don't
|
||||||
|
# even need to do an lcm
|
||||||
|
set a [lmul [dict values $when(dn)]]
|
||||||
|
if {$a != 0} {
|
||||||
|
puts $a
|
||||||
|
break
|
||||||
|
}
|
||||||
|
#puts $when(dn)
|
||||||
|
set last $when(dn)
|
||||||
|
}
|
||||||
|
incr i
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
solve stdin
|
|
@ -0,0 +1,131 @@
|
||||||
|
...................................................................................................................................
|
||||||
|
..#...#....#.......#.#..##......#...............#..#....#......................................#....##.........#...##..#.#.....#...
|
||||||
|
.....#..#............#....#.#...##..#.................#..#..................#...#.#.......#.#..#....#.....#...#.#..............#...
|
||||||
|
.#........#...........#......................#..........#................#...#..............#......#...........#..#.....#.#........
|
||||||
|
..#.#.#..........#.......#....#....#......#.......#...#..................#.###...........#...........##...#..........#.##.#.#.#.#..
|
||||||
|
.#.#.........#.....#.#...........#.......##.###.....#.#.........#.#.........##.................##.........##.#.............##.#....
|
||||||
|
...#.#...#.#...........#.#.####....................##.#........##..........#......#.............##.#...............#...............
|
||||||
|
......##...#.##....#.......#....#...#....#..................................#......#.#.#..#.........#..........#..#...#............
|
||||||
|
.#..#..#...#........................#......#...##.................#...............#..........##.........#..........................
|
||||||
|
......#...#..#...#................#....#.....................#..................#...#.............#..#..#.......##.#.....#.........
|
||||||
|
.#........#..........#...#........#...........##..............#...#..#.................#............................#.....#....#...
|
||||||
|
...............##..####...........###..#...##.#................#.......#.................#......#........................#......#..
|
||||||
|
....#............#.........#...........#..#.#.#..........#..........#...............#....#....###...##.........#...................
|
||||||
|
.#.....#..#....#.#..............#..#.....#.#........................................##..#.....#....#...#..##.##...#................
|
||||||
|
.....#.....#....#..#......#...............#....#.......#..#..............#...................#............................#........
|
||||||
|
................#........#................#.#.........................#.....#.......#.....#.................#.....#.........#......
|
||||||
|
......##....#..#...#....#..#............#....#...........#..##............#..#.........#.......#...#.#..........#.....#...#....#...
|
||||||
|
....#.#...#.........#..#....#...#......#................#..##.......##.................#..#....#..........#......#.................
|
||||||
|
..........#..#..#..#..........#........................#.................###..............##.#..#.#......#...#.##...........#......
|
||||||
|
.###...#.......#..................#....#...............#.......#..#..#...#..#.......................#.#...#..#........#...#......#.
|
||||||
|
.......#...........#.#..##......#................#............#.#.#......#................#.........#.....#..........#..#..#...#...
|
||||||
|
....#.....................##....#......##...................#...............#.....#...............#..#........#.#....##.....#..#...
|
||||||
|
.......#..#.##..#...###...#........#.............##........#......................##.........#...............#....#.#..............
|
||||||
|
..###.......#..#......#........#...#...............###.###.........#.#.#........#...........#.........#...........#....#....#.#....
|
||||||
|
.....#..........#......#...#.........#........#........#...#...........#.....#.#.............................#.#.......###.##.#.##.
|
||||||
|
..#.................#.............#................#.#............#.#.....#........................#........#.................#....
|
||||||
|
.#..##..#.#......##..........................#..#.........#.....#......#.....#.....#............................###.....##....#..#.
|
||||||
|
.......#.#.......#............#...........#....#.......#....#...............#.#..##..##.........#....#..............#....###...#...
|
||||||
|
...#.......#..##..#..#......................#......##......#........#...#........##.##.#..................#...#.#....##..##......#.
|
||||||
|
...#.......#.........#.........................#...................#......#.......#...#...#.......#............#........###........
|
||||||
|
.#.#.#...#.#........##..................#...#.#.........................#......#.....#..#.#........##............#...........#.....
|
||||||
|
.#.#...#.....###.#........##...........#..#...##.........#...###..#.#...#....##........#...#.............#...#........##...#.....#.
|
||||||
|
..............#..........#...#........#.......##..##........................#................#........##.........#.................
|
||||||
|
....##.................#..................................#.............##..#.#....#...#..#...................#.....#....#.#.#.....
|
||||||
|
....#####...##...#..##..#..#.......###.....#.#......#..#..#.##.....#..#.................#..........................#.#.##.#........
|
||||||
|
..........#..#....##.#.................#......#...#.#.......#......##.........#..#.#.....................................#..#......
|
||||||
|
..##..##.....#.....#....#...........#.#..........#............#.......###....................#..#..........#....#............#...#.
|
||||||
|
......#..........#.......................#...#......#...#...#..#....#..#.....#...........#..#....#............#.....#....#.#.......
|
||||||
|
.#..#......#...#..##................##..#...#.........#.........#.#..#..................#..........................#...#..#.##.....
|
||||||
|
..#......#..#..................................#.....#.###.#.........#......#.#...#................#..........#....#...............
|
||||||
|
........#..##....#...................#........#....#...#..........#...#...#..........####.....#..##.#................#.........###.
|
||||||
|
....#..............................#..#..#..#.##......#...#...................#.##..........#..#...#..................#....###.##..
|
||||||
|
.#..........................#.#..#...........#..#......#..#..#........................#........................##...#.#..#......#..
|
||||||
|
............................#..#...#..................#................#..............##.#.#.#..................#...........##.#...
|
||||||
|
.........#..###............#.....##...#..#...#.##.....##....#.....#.#.......#.#...#........##.........#.#..............#.#.....#...
|
||||||
|
...........#............#.........#.....##...##......#.........#...##...............#.##................#............#.....#...#...
|
||||||
|
.#####.#..#...............................#..#...............#...................#.....#.#............#................#...#.......
|
||||||
|
.#..#...#....#....................#...........#.................................................#......##................#....##.#.
|
||||||
|
....#......#..........#..##...#..#.##....#...#.....#.#........#...#.....#.....#......#...#..#..#..#........................#....#..
|
||||||
|
...#.....#..........##......#..#.....##...#...#...#.#..........#..............#.....#..........#..#.....###.................###....
|
||||||
|
.....................##...#....#....#......#...#.#.......#...........#..........#..............#.......##.................#..#.....
|
||||||
|
..##.................#.......#...........#.##........#..##.#...........#.#....#.#.......#..##....#.#..#....#....#..................
|
||||||
|
.....#...........#.#........#..........#..#.##.....#............#.......#..#.....##....#.#...........##.......#............#.......
|
||||||
|
.....##.#.............##........##...........#..#.#..##.#.......#.......#..................#.#..#..#.......#.................#.#...
|
||||||
|
.#.#..............##....#.......#......#..#........#..................#.#.##..#...#....#.#...........##.....#..#..#.........##.....
|
||||||
|
..............##................#....#....#........#.......#...##...#.#.#........#.#...#...#..#.#.......#.#...#....................
|
||||||
|
.............####.....#..........................#.#..................................#........#.#..##...#...#..#..................
|
||||||
|
.#......................#.....#####.#...........#.#............#.............##....#....#.#...........##..........##...........##..
|
||||||
|
...........#.#.#..#...##...##........#.......#.......#.#........#.......#......#............#..###....#.......#..#.....#........#..
|
||||||
|
............#....#...............#.##............#...##....#.#...........#........#...#...##...........#..........#................
|
||||||
|
......................#............#..##......#......#....#.......#..##......#...#....#....#....#..#..#..........#.....#.#.........
|
||||||
|
................#.....##.......#....##..#.......#......###......#.......#....#.......#....##...........#.#....#....##....#.........
|
||||||
|
................#..#...#.##...#...#....#.........#....#...##......#.#...#....#.............#.....#............##...#...............
|
||||||
|
......................#....#......#.#....##...#...#...#.#.......#.....#..#.......#...#.#.##..#........#.....#....#.........#.......
|
||||||
|
.....##..#..#......................#.#........#....#......#....#..#....#.........#..#.......#.......#.......#.#.......#.###..#.....
|
||||||
|
.................................................................S.................................................................
|
||||||
|
..................#...#.....#....#...........#..#.#..........#............................#....................##.....#....#.......
|
||||||
|
.........#....#......#..#......#...#.#......#...#...#..............#....##.##........#..........##...##...#.......##.#....#........
|
||||||
|
................#.##.#..#..............#.....#..#......#....#............#.#...###..#......#......#....#........#..##..............
|
||||||
|
.........#.....................................#...#.#.............#.....#...........#........###.....................#.#..........
|
||||||
|
.........#....#...........#...##..#........#..........#.#.....#.................#.#.#.##..#...#.#................#....#............
|
||||||
|
...................#...................#...#..............#.....#.#.......#..............#......#..........###.......#..#..........
|
||||||
|
...........#.#.............##...#...#....#.#.....#....................#.....#..#.....#........##.#....#....#...................##..
|
||||||
|
.#................#.#.#.##.............#..#...#....#.#..####.#.......##......................#.......#....#....##................#.
|
||||||
|
...##..............###...#.#..#..#.#...................#....#...#..#.#....##.....#.....#........#...#...#.#.#...................##.
|
||||||
|
................................##.#..........#........#..........#.#....#.........##.......##........#............................
|
||||||
|
...#............##......#.........#.....#.#................##......#.......#....##...#....#.....#.#..#....#.#.....#.............#..
|
||||||
|
......#.........#.....###.##...#..#...#..#.##....#.#.....#.#.#........##...#..#..........#.............#...................#.......
|
||||||
|
.#....#............#.....#..##....##...##.....#.#......##..#........#..........#.................#.......#......#.............#....
|
||||||
|
...#.....#........#......#...........#..#......#.#.#...#....#.###.....##...##..#...#......#..#..........#..#..#..........#.....#...
|
||||||
|
..#.#..#...........#.###...#.......#..........#...#.........#.#....#......#.........#...#....#...#.##....#....#..........##....#...
|
||||||
|
......#.#...#............##.......#.......##...............#..................#.#....#..#..#..#..#...#...#...#.....................
|
||||||
|
....#.......................#........##..#........##.....#.............#........#.#...........#.....#....##...........#..#.........
|
||||||
|
...#.......#..#.......#......#....#......#..........#.#.#.#.......##....#....................##.........#................#..#......
|
||||||
|
..#....................###.......##.#.....#.....#.#............##..#....#..#.................#...#..##.###............#...#..##....
|
||||||
|
.....#......#..#...............#.....##......#.....#.......#..#.#..#....#..##.................##....#....##................#....#..
|
||||||
|
.............##..#.........#..#..#........#..#..........#...#................###..........##.#.#.........#........#....##..#..#....
|
||||||
|
.#.#.#.......#..............#....#...#............#.......#....#.........#........#....#............#............#...#.#..#........
|
||||||
|
.............#.....#.........................#....#.#...........#.................#.#..#....#..........................#.##...#....
|
||||||
|
...#......#........#.............#..................#.###....................#.#.....#........#.....#.........#.#.#.....#.#........
|
||||||
|
.#.............#...##...........#.....#.....#.............#.........#...............###....#...#..#.#............#.#.............#.
|
||||||
|
............##..#................#....#.......#............##.........##..................#......................#.#..#....#.......
|
||||||
|
............#......#.....................#.#.#.#..#.#..#......#.............#.#....##.....#....#...............#.#............#....
|
||||||
|
..#..#.#.#.#....#......#............##..............#....##.........#.......#.....#...##.....#....................#.......#.....#..
|
||||||
|
...#...........#.......#...................#......#...#.##....##....#..#.#...##..#..........#...##............#..#........#.....#..
|
||||||
|
.....#....#..#..##................#...#...#....#.#....#.#.............#...#..............#.##.............#..#..#....#.#...#...#.#.
|
||||||
|
.......#..#.........#.....#..........#......#.#...#.........#.#.....#...#..........#....................#....#..........#..........
|
||||||
|
..#.#.#.....#.........#..###...........#.##.#.......#..#..........#.#.......#......#......#.#.........#.#....#..#..#.......#....#..
|
||||||
|
.#.........#...#......#...............#......#.#.....#.....................#.......#.#......#..................#...............##..
|
||||||
|
..#....#..............................#.....#.##.....#........#....#......#....#....#..#....#........###..#..#..........#....#..#..
|
||||||
|
....#.......##........##..............................#.........#...###.#........#...#.##.............##.....#.#......#..........#.
|
||||||
|
...#.#.##.....#........#.................#...#..#........#............#..#.#........#....................#.....#........#..........
|
||||||
|
.........#....#.........#.......##...........#.#.#.#..............#......#..#.......................#.#......................#.....
|
||||||
|
............#........#..##..#................#..#.............#.............####....#..#.........#............................#....
|
||||||
|
....#......#..##...#...#.#...................#.....#.....#.........#.............#...............#...............###.......#.#.....
|
||||||
|
.#.....#..........................#...........#...............#............##......#.#..........#.......#..........................
|
||||||
|
...##.....................#....#...#.........#...............#..#......##.#...#.#..................#.......#.......................
|
||||||
|
...#........#....#....................#............#.#...#...............#................................##..........##....#.#....
|
||||||
|
.#...##.....#........####....#......#.#......................#.............#..#....#.......#...........#..#.........#..............
|
||||||
|
......#..............#...........#..##.....................#.#.......#.#..###.............#......#.......#..#...#...............#..
|
||||||
|
...#....#...................##...................#.#.#.#...##.....#.#.......#.#..........#............#..............##.......#....
|
||||||
|
...........#.................##.........#..............#.......##..##..#.#................##.#.#..#.#.#.............#..............
|
||||||
|
........#..##.....#.#.......#.........................#....##.........###.....##........#..........#..#...#............#...#....#..
|
||||||
|
...................#.#.#......#..#.........#............#..#........#........#............#....#...........#.......................
|
||||||
|
.......#..........#.............#.#.#..#....#...............#..............#...........##..#...#..................#..........##..#.
|
||||||
|
..............##....#....#..#.....#..........#.........#.#...#.....###..#.............#...................#..#.#.#....##..#....#...
|
||||||
|
...##..........#.....#.#.#...##...#...#........#............#........#.#..............#.....#........#..##...........#.#........#..
|
||||||
|
.#..#.#....#..##.##....##.#....##....#...#...#..........#..##.......#...................#.......##..........#........#...#.#....#..
|
||||||
|
.#..#....#........#......#...............###.............#..........#...#...............#........#...#...###....#..#.#.........#...
|
||||||
|
.....#.........#.#..#....#...#.....#......#.................#...#....#...............#.........#.........#...........#.#...........
|
||||||
|
..##.....#..........#...#..#.....#....#.#.....................#...#.................#.....#..#...#.#................#.........##.#.
|
||||||
|
.........#..#.##........#...####......#.......#................#...#............#..#.#...........#....#.....#.#....#...###.........
|
||||||
|
.........#......#...#...#....#...#.....##..#..##.....#..............#........#........#.........#...........#.....#......#.#..#....
|
||||||
|
...##.......#.....#....#.............#.##...#.#....................................#.#...#...............#...................#.....
|
||||||
|
......................#.###.............#........#.................................#.##........#..#.#.............##...#...........
|
||||||
|
...#........#....#.....#.#...........#.#.......#....#.............#................#.....#..#..#..#.#.......#...#.....#.....##.....
|
||||||
|
.##.#....#.........#........##......#................##............................#...#..................#...##............##.....
|
||||||
|
......#.......#........#..#.#...#.........#............#.#........................#..#....#.#...##.........#...#..........##.......
|
||||||
|
............#.#...#.....#..#..........#.....#..........................###.#.......##..#......#...#......#.........##...###.....#..
|
||||||
|
.#.#......#.#..............#............#..........#.#....................#......#..#...#....#..#.#......#...............#.#.......
|
||||||
|
...................................................................................................................................
|
|
@ -0,0 +1,11 @@
|
||||||
|
...........
|
||||||
|
.....###.#.
|
||||||
|
.###.##..#.
|
||||||
|
..#.#...#..
|
||||||
|
....#.#....
|
||||||
|
.##..S####.
|
||||||
|
.##..#...#.
|
||||||
|
.......##..
|
||||||
|
.##.#.####.
|
||||||
|
.##..##.##.
|
||||||
|
...........
|
|
@ -0,0 +1,191 @@
|
||||||
|
import sys
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
def read_map(input):
|
||||||
|
map = [x.strip() for x in input]
|
||||||
|
|
||||||
|
if len(map) < 80:
|
||||||
|
print(map)
|
||||||
|
|
||||||
|
Y = len(map)
|
||||||
|
X = len(map[0])
|
||||||
|
assert all(len(row) == X for row in map)
|
||||||
|
assert X == Y
|
||||||
|
|
||||||
|
return map
|
||||||
|
|
||||||
|
def draw(mask, fill):
|
||||||
|
if len(fill) < 50:
|
||||||
|
for i, row in enumerate(fill):
|
||||||
|
print("".join(".O#!"[f + 2*mask[i,j]] for j,f in enumerate(row)))
|
||||||
|
print()
|
||||||
|
|
||||||
|
|
||||||
|
def solve(map):
|
||||||
|
Y = len(map)
|
||||||
|
X = len(map[0])
|
||||||
|
|
||||||
|
fill = numpy.zeros((Y,X+1), dtype='uint8')
|
||||||
|
mask = numpy.zeros((Y,X+1), dtype='uint8')
|
||||||
|
for i, row in enumerate(map):
|
||||||
|
for j, c in enumerate(row):
|
||||||
|
if c == '#':
|
||||||
|
mask[i,j] = 1
|
||||||
|
if c == 'S':
|
||||||
|
start = (i,j)
|
||||||
|
|
||||||
|
# add a border on the side of the map (to prevent wraparound)
|
||||||
|
mask[:, -1] = 1
|
||||||
|
|
||||||
|
# start at the start
|
||||||
|
fill[start] = 1
|
||||||
|
|
||||||
|
for i in range(64):
|
||||||
|
fill = step(mask, fill)
|
||||||
|
#draw(mask, fill)
|
||||||
|
if i == 6-1: # sample
|
||||||
|
print(fill.sum())
|
||||||
|
|
||||||
|
print("part1 = ", fill.sum())
|
||||||
|
|
||||||
|
|
||||||
|
def solve2(map):
|
||||||
|
Y = len(map)
|
||||||
|
X = len(map[0])
|
||||||
|
|
||||||
|
fill = numpy.zeros((Y,X), dtype='uint8')
|
||||||
|
mask = numpy.zeros((Y,X), dtype='uint8')
|
||||||
|
for i, row in enumerate(map):
|
||||||
|
for j, c in enumerate(row):
|
||||||
|
if c == '#':
|
||||||
|
mask[i,j] = 1
|
||||||
|
if c == 'S':
|
||||||
|
start = (i,j)
|
||||||
|
|
||||||
|
print(fill.shape, mask.shape)
|
||||||
|
|
||||||
|
fill[start] = 1
|
||||||
|
values, period, d2 = simulate(fill, mask, max_steps=500)
|
||||||
|
|
||||||
|
for n in 6,10,50,100,500,1000, 5000, 26501365:
|
||||||
|
print(n, extrapolate(n, values, period, d2))
|
||||||
|
|
||||||
|
|
||||||
|
def simulate(fill, mask, max_steps):
|
||||||
|
Y,X = mask.shape
|
||||||
|
assert Y == X, "need a square matrix"
|
||||||
|
period = X
|
||||||
|
tiles = 1
|
||||||
|
|
||||||
|
original_mask = mask
|
||||||
|
prev = [0]
|
||||||
|
diffs = []
|
||||||
|
for i in range(max_steps):
|
||||||
|
# expand the map if necessary
|
||||||
|
if fill[0].any() or fill[-1].any() or fill[:,0].any() or fill[:,-1].any():
|
||||||
|
draw(mask,fill)
|
||||||
|
print("expanding...")
|
||||||
|
tiles += 2
|
||||||
|
mask = numpy.tile(original_mask, (tiles,tiles))
|
||||||
|
fill = numpy.pad(fill, [(Y,Y), (X,X)])
|
||||||
|
|
||||||
|
# take one more step and count the number of reachable squares
|
||||||
|
fill = step(mask, fill)
|
||||||
|
n = int(fill.sum())
|
||||||
|
|
||||||
|
# look for patterns
|
||||||
|
# although the number of squares is somewhat unpreditable from step
|
||||||
|
# to step (due to the maze-like structure of the mask), the fact that
|
||||||
|
# the mask repeats in tiles (and the fact that there are unobstructed
|
||||||
|
# pathways in the orthogonal and diagonal directions) means that, in
|
||||||
|
# the long run, the flood fill will even out and -importantly- it should
|
||||||
|
# have some recognizable pattern every N steps (where N is the period
|
||||||
|
# of the tiling - 11 in the sample, 131 in the input). this is because
|
||||||
|
# we enter new tiles every N steps, and although it's hard to predict
|
||||||
|
# exactly how many of the squares in each tile we'll have visited,
|
||||||
|
# it should be the same number in every tile (or rather, there should
|
||||||
|
# be some small set of repeated tile-states, and we should be able to
|
||||||
|
# predict how many of each tile-state there will be).
|
||||||
|
#
|
||||||
|
# SO the first step is to get the difference between the current
|
||||||
|
# number of reachable squares and the number N steps ago.
|
||||||
|
#
|
||||||
|
# d1(i) = f(i) - f(i - N)
|
||||||
|
#
|
||||||
|
# we then have to discover some pattern in that sequence.
|
||||||
|
# we know the number of reachable squares will grow roughly as the
|
||||||
|
# square of the number of steps (because the map is 2D) so
|
||||||
|
# we should be looking for a quadratic relation.
|
||||||
|
# we can use second-order differences (see day 9) to do that.
|
||||||
|
# d1 is already a first-order difference, so take the difference
|
||||||
|
# between d1s to get a second-order difference. if our assumption is
|
||||||
|
# correct, then d1 should be a linear sequence and d2 should be a
|
||||||
|
# constant.
|
||||||
|
#
|
||||||
|
# d2(i) = d1(i) - d1(i-N)
|
||||||
|
# = (f(i) - f(i-N)) - (f(i-N) - f(i-N-N))
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# there may be some unstability at the beginning of the simulation
|
||||||
|
# so we need to wait until the d2 values for every step in the period
|
||||||
|
# all agree.
|
||||||
|
#
|
||||||
|
# once it settles down, this gives us a set of N (11, 131, whatever)
|
||||||
|
# equations we can use to predict the number of squares after any
|
||||||
|
# future number of steps
|
||||||
|
#
|
||||||
|
d2 = 0
|
||||||
|
if len(prev) >= 2*period:
|
||||||
|
# find the second differece
|
||||||
|
d2 = (n - prev[-period]) - (prev[-period] - prev[-2*period])
|
||||||
|
diffs.append(d2)
|
||||||
|
prev.append(n)
|
||||||
|
print(i, n, d2, sep="\t", flush=True)
|
||||||
|
if len(diffs) > period and all_same_value(diffs[-period:]):
|
||||||
|
print("gotcha!")
|
||||||
|
return prev, period, diffs[-1]
|
||||||
|
assert False, "failed to find a stable pattern"
|
||||||
|
return prev, period, None
|
||||||
|
|
||||||
|
def all_same_value(list):
|
||||||
|
if len(list) < 1:
|
||||||
|
return False
|
||||||
|
x = list[0]
|
||||||
|
return all(x == y for y in list)
|
||||||
|
|
||||||
|
def extrapolate(n, values, period, d2):
|
||||||
|
if n < len(values):
|
||||||
|
return values[n]
|
||||||
|
quo, rem = divmod(n-len(values)+period, period)
|
||||||
|
x = len(values)-period+rem
|
||||||
|
y = values[-period+rem]
|
||||||
|
d1 = y - values[-2*period+rem]
|
||||||
|
while x < n:
|
||||||
|
d1 += d2
|
||||||
|
y += d1
|
||||||
|
x += period
|
||||||
|
assert x == n
|
||||||
|
return y
|
||||||
|
|
||||||
|
def step(mask, old):
|
||||||
|
# flood fill
|
||||||
|
#draw(fill)
|
||||||
|
fill = numpy.zeros(old.shape, dtype='uint8')
|
||||||
|
y,x = fill.shape
|
||||||
|
for i in range(y):
|
||||||
|
f = (old[i] == 1)
|
||||||
|
f = numpy.roll(f, 1) | numpy.roll(f, -1)
|
||||||
|
if i > 0: f |= (old[i-1] == 1)
|
||||||
|
if i < y-1: f |= (old[i+1] == 1)
|
||||||
|
f &= (mask[i] == 0)
|
||||||
|
#print(old, f)
|
||||||
|
if f.any():
|
||||||
|
fill[i, f] = 1
|
||||||
|
|
||||||
|
assert fill.any()
|
||||||
|
return fill
|
||||||
|
|
||||||
|
|
||||||
|
map = read_map(sys.stdin)
|
||||||
|
solve(map)
|
||||||
|
solve2(map)
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,7 @@
|
||||||
|
1,0,1~1,2,1
|
||||||
|
0,0,2~2,0,2
|
||||||
|
0,2,3~2,2,3
|
||||||
|
0,0,4~0,2,4
|
||||||
|
2,0,5~2,2,5
|
||||||
|
0,1,6~2,1,6
|
||||||
|
1,1,8~1,1,9
|
|
@ -0,0 +1,154 @@
|
||||||
|
def overlaps(brick1, brick2):
|
||||||
|
"""reports whether two bricks overlap with each other"""
|
||||||
|
# the bricks as a whole overlap if there is any overlap
|
||||||
|
# on all three axes
|
||||||
|
for (a,b),(x,y) in zip(brick1, brick2):
|
||||||
|
if (b < x or a > y):
|
||||||
|
# ranges don't overlap
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
assert overlaps([(0,0), (1,2), (2,2)], [(0,0),(1,1),(2,3)])
|
||||||
|
assert not overlaps([(0,0), (1,1), (2,2)], [(1,1),(1,1),(2,2)])
|
||||||
|
|
||||||
|
|
||||||
|
def read_input(f):
|
||||||
|
data = []
|
||||||
|
for line in f:
|
||||||
|
start, end = line.split("~")
|
||||||
|
start = [int(x) for x in start.split(',')]
|
||||||
|
end = [int(x) for x in end .split(',')]
|
||||||
|
brick = [tuple(sorted([a,b])) for a,b in zip(start,end)]
|
||||||
|
data.append(brick)
|
||||||
|
return data
|
||||||
|
|
||||||
|
def check(data):
|
||||||
|
print(data)
|
||||||
|
for x in data:
|
||||||
|
for y in data:
|
||||||
|
if x == y:
|
||||||
|
assert overlaps(x,y)
|
||||||
|
else:
|
||||||
|
assert not overlaps(x,y)
|
||||||
|
print("ok")
|
||||||
|
|
||||||
|
def solve(f):
|
||||||
|
data = read_input(f)
|
||||||
|
|
||||||
|
check(data)
|
||||||
|
settle(data)
|
||||||
|
check(data)
|
||||||
|
disintegrate(data)
|
||||||
|
cascade(data)
|
||||||
|
|
||||||
|
def settle(data):
|
||||||
|
def zindex(b):
|
||||||
|
return b[2]
|
||||||
|
data.sort(key=zindex)
|
||||||
|
|
||||||
|
top = 1
|
||||||
|
for i in range(len(data)):
|
||||||
|
# first, lower to just above the top of the highest block
|
||||||
|
b = data[i]
|
||||||
|
z = b[2][0]
|
||||||
|
if z > top:
|
||||||
|
#print("lowering block %d by %d" % (i, z-top))
|
||||||
|
b = lower(b, z-top)
|
||||||
|
|
||||||
|
# lower block one at a time
|
||||||
|
n = 0
|
||||||
|
under = data[:i]
|
||||||
|
while canlower(b, under):
|
||||||
|
b = lower(b)
|
||||||
|
n += 1
|
||||||
|
print("lowering block %d by %d+%d" % (i,z-top,n))
|
||||||
|
data[i] = b
|
||||||
|
|
||||||
|
top = max(top, b[2][1] + 1)
|
||||||
|
|
||||||
|
# FIXME: should probably re-sort the data here,
|
||||||
|
# but it seems to work even if we don't
|
||||||
|
|
||||||
|
|
||||||
|
def canlower(block, under):
|
||||||
|
if block[2][0] <= 1:
|
||||||
|
return False
|
||||||
|
x = lower(block)
|
||||||
|
for u in reversed(under):
|
||||||
|
if overlaps(u, x):
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
def disintegrate(data):
|
||||||
|
print(*data, sep="\n")
|
||||||
|
t = 0
|
||||||
|
|
||||||
|
#for i,x in enumerate(data):
|
||||||
|
# assert not canlower(x,data[:i])
|
||||||
|
|
||||||
|
for i,x in enumerate(data):
|
||||||
|
# disintegrate x
|
||||||
|
|
||||||
|
# see if any block above x can be lowered
|
||||||
|
# if yes, then x cannot be disintegrated
|
||||||
|
candisintegrate = True
|
||||||
|
for j in range(i+1, len(data)):
|
||||||
|
if canlower(data[j], data[:i] + data[i+1:j]):
|
||||||
|
candisintegrate = False
|
||||||
|
break
|
||||||
|
|
||||||
|
print(i, x, candisintegrate)
|
||||||
|
if candisintegrate:
|
||||||
|
t += 1
|
||||||
|
|
||||||
|
print(t)
|
||||||
|
return (t)
|
||||||
|
|
||||||
|
|
||||||
|
def cascade(data):
|
||||||
|
print(*data, sep="\n")
|
||||||
|
t = 0
|
||||||
|
|
||||||
|
#for i,x in enumerate(data):
|
||||||
|
# assert not canlower(x,data[:i])
|
||||||
|
|
||||||
|
for i,x in enumerate(data):
|
||||||
|
below = data[:i]
|
||||||
|
upper = data[i+1:]
|
||||||
|
moved = 0
|
||||||
|
|
||||||
|
if below:
|
||||||
|
top = max(z[1] for x,y,z in below) + 1
|
||||||
|
else:
|
||||||
|
top = 1
|
||||||
|
for b in upper:
|
||||||
|
# lower blocks one at a time
|
||||||
|
z = b[2][0]
|
||||||
|
if z > top:
|
||||||
|
b = lower(b, z-top)
|
||||||
|
|
||||||
|
while canlower(b, below):
|
||||||
|
b = lower(b)
|
||||||
|
|
||||||
|
if b[2][0] < z:
|
||||||
|
moved += 1
|
||||||
|
|
||||||
|
#print("lowering block %d by %d" % (i,n))
|
||||||
|
below.append(b)
|
||||||
|
top = max(top, b[2][1]+1)
|
||||||
|
|
||||||
|
print(i, x, "caused %d blocks to move" % moved)
|
||||||
|
t += moved
|
||||||
|
|
||||||
|
print(t)
|
||||||
|
return (t)
|
||||||
|
|
||||||
|
def lower(brick, n=1):
|
||||||
|
"""lower a brick n spaces in the z direction"""
|
||||||
|
x, y, z = brick
|
||||||
|
if z[0] > n:
|
||||||
|
z = z[0]-n, z[1]-n
|
||||||
|
return [x, y, z]
|
||||||
|
|
||||||
|
import sys
|
||||||
|
solve(sys.stdin)
|
|
@ -0,0 +1,141 @@
|
||||||
|
#.###########################################################################################################################################
|
||||||
|
#.#...###...#...#...#...#.....###.....#...###...#...#...#.....#...#.......#...#...........#.......#.....#...#.....###.........#.....###...###
|
||||||
|
#.#.#.###.#.#.#.#.#.#.#.#.###.###.###.#.#.###.#.#.#.#.#.#.###.#.#.#.#####.#.#.#.#########.#.#####.#.###.#.#.#.###.###.#######.#.###.###.#.###
|
||||||
|
#...#.#...#.#.#.#.#.#.#.#...#.###.#...#.#...#.#.#.#.#.#.#...#.#.#.#.#.....#.#.#.......#...#.#.....#...#...#.#...#.....#...#...#.#...#...#...#
|
||||||
|
#####.#.###.#.#.#.#.#.#.###.#.###.#.###.###.#.#.#.#.#.#.###.#.#.#.#.#.#####.#.#######.#.###.#.#######.#####.###.#######.#.#.###.#.###.#####.#
|
||||||
|
#.....#...#.#.#...#.#.#...#.#.>.>.#...#.#...#.#...#.#.#.#...#.#.#...#...###.#.#...#...#.....#...#...#.#.....###.....#...#...###.#...#...#...#
|
||||||
|
#.#######.#.#.#####.#.###.#.###v#####.#.#.###.#####.#.#.#.###.#.#######.###.#.#.#.#.###########.#.#.#.#.###########.#.#########.###.###.#.###
|
||||||
|
#.#...#...#.#.....#.#.#...#.#...#...#...#...#.#...#.#.#...#...#.......#...#.#...#.#.....#.......#.#.#.#.........###.#.#...#...#.#...#...#...#
|
||||||
|
#.#.#.#.###v#####.#.#.#.###.#.###.#.#######.#.#.#.#.#.#####.#########.###.#.#####.#####.#.#######.#.#.#########.###.#.#.#.#.#.#.#.###.#####.#
|
||||||
|
#.#.#.#...#.>.....#...#...#.#.....#.#...#...#.#.#...#.....#.###...###.#...#...#...#...#.#.#...###.#.#.#.........#...#...#.#.#...#.###.#.....#
|
||||||
|
#.#.#.###.#v#############.#.#######.#.#.#.###.#.#########.#.###.#.###.#.#####.#.###.#.#.#.#.#.###.#.#.#.#########.#######.#.#####.###.#.#####
|
||||||
|
#.#.#.#...#.......#.....#.#.###...#...#.#...#.#...#####...#...#.#.#...#.#.>.>.#...#.#.#.#...#.#...#.#.#...>.>.#...#...#...#.#.....#...#.....#
|
||||||
|
#.#.#.#.#########.#.###.#.#.###.#.#####.###.#.###.#####.#####.#.#.#.###.#.#v#####.#.#.#.#####.#.###.#.#####v#.#.###.#.#.###.#.#####.#######.#
|
||||||
|
#.#.#...#####.....#.#...#...#...#.......###.#.#...#.>.>.###...#.#.#...#...#...#...#.#.#.....#.#.###...#.....#...#...#...###.#...###.#.......#
|
||||||
|
#.#.#########.#####.#.#######.#############.#.#.###.#v#####.###.#.###.#######.#.###.#.#####.#.#.#######.#########.#########.###.###.#.#######
|
||||||
|
#.#...#.......#...#.#.....#...#...#...#...#.#.#.....#.....#.....#...#.#.......#.....#...#...#.#.......#.#...###...#...###...#...#...#.......#
|
||||||
|
#.###.#.#######.#.#.#####.#.###.#.#.#.#.#.#.#.###########.#########.#.#.###############.#.###.#######.#.#.#.###.###.#.###.###.###.#########.#
|
||||||
|
#...#.#.#.....#.#...#.....#.....#...#...#.#...#.....#.....#...#####.#.#...#...###...###...###.....#...#...#...#.#...#.#...#...#...#...#...#.#
|
||||||
|
###.#.#.#.###.#.#####.###################.#####.###.#.#####.#.#####.#.###.#.#.###.#.#############.#.#########.#.#.###.#.###.###.###.#.#.#.#.#
|
||||||
|
###...#.#.###...###...#.........#.........#...#...#.#.......#.....#...###...#...#.#.#.......#...#...#...###...#.#...#.#.#...#...#...#...#...#
|
||||||
|
#######.#.#########.###.#######.#.#########.#.###.#.#############.#############.#.#.#.#####.#.#.#####.#.###.###.###.#.#.#.###.###.###########
|
||||||
|
#.......#.#.........#...#...#...#.......###.#.#...#...............#...#.........#.#.#.#.....#.#.......#.....###.....#...#.....#...#...#.....#
|
||||||
|
#.#######.#.#########.###.#.#.#########.###.#.#.###################.#.#.#########.#.#.#.#####.#################################.###.#.#.###.#
|
||||||
|
#.........#...........#...#...#.........#...#.#...#...............#.#...#.....###.#...#.....#.....................#.............###.#.#.#...#
|
||||||
|
#######################.#######.#########.###.###.#.#############.#.#####.###.###.#########.#####################.#.###############.#.#.#.###
|
||||||
|
#.........###...........#.....#...........#...###...#.........#...#.#...#.###.....#.........#...#.................#.........###...#.#.#.#.###
|
||||||
|
#.#######.###.###########.###.#############.#########.#######.#.###.#.#.#.#########.#########.#.#.#########################.###.#.#.#.#.#.###
|
||||||
|
#.......#.....#.....#...#.#...###.........#.#.......#.......#...###...#...#...#...#.......#...#.#.......#.....###.....#...#.....#...#...#...#
|
||||||
|
#######.#######.###.#.#.#.#.#####.#######.#.#.#####.#######.###############.#.#.#.#######.#.###.#######.#.###.###.###.#.#.#################.#
|
||||||
|
#.......#.......###...#.#.#.#...#.......#...#.....#.#.....#.#.......#.......#...#.........#...#...#...#...#...#...#...#.#.#.......#...#.....#
|
||||||
|
#.#######.#############.#.#.#.#.#######.#########.#.#v###.#.#.#####.#.#######################.###.#.#.#####.###.###.###.#.#.#####.#.#.#.#####
|
||||||
|
#.........#...#####.....#.#.#.#.#...#...#.....#...#.>.>.#...#...#...#.......#.............###.#...#.#.......###...#.###.#.#.#...#...#...#...#
|
||||||
|
###########.#.#####.#####.#.#.#.#.#.#.###.###.#.#####v#.#######.#.#########.#.###########.###.#.###.#############.#.###.#.#v#.#.#########.#.#
|
||||||
|
#...........#...#...#...#.#.#.#.#.#.#...#...#.#.#.....#...#...#.#.#...#...#...#...........#...#...#...........###.#.#...#.>.#.#...#.....#.#.#
|
||||||
|
#.#############.#.###.#.#.#.#.#.#.#.###v###.#.#.#.#######.#.#.#.#.#.#.#.#.#####.###########.#####.###########.###.#.#.#####v#.###.#.###.#.#.#
|
||||||
|
#...........#...#...#.#.#.#.#.#...#...>.>.#.#.#.#.......#...#.#.#.#.#.#.#.#...#.......#...#...#...#...#...#...#...#...#.....#.#...#.#...#.#.#
|
||||||
|
###########.#.#####v#.#.#.#.#.#########v#.#.#.#.#######.#####.#.#.#.#.#.#.#.#.#######.#.#.###.#.###.#.#.#.#v###.#######.#####.#.###.#.###.#.#
|
||||||
|
###...#...#.#.#...#.>.#.#.#...#.........#...#...#######.#.....#.#.#.#...#.#.#...#...#.#.#.....#.#...#.#.#.>.>.#.......#.....#.#...#.#.###.#.#
|
||||||
|
###.#.#.#.#.#.#.#.#v###.#.#####.#######################.#.#####.#.#.#####.#.###.#.#.#.#.#######.#.###.#.###v#.#######.#####.#.###.#.#.###.#.#
|
||||||
|
#...#...#...#...#...#...#...###.............###.........#.#####.#.#.#.....#...#.#.#.#.#.....###...#...#.###.#.........#.....#.#...#.#.....#.#
|
||||||
|
#.###################.#####.###############.###.#########.#####.#.#.#.#######.#.#.#.#v#####.#######.###.###.###########.#####.#.###.#######.#
|
||||||
|
#.#...#...#...#.....#...#...#...........#...#...#.......#...#...#.#.#.#.....#.#.#.#.>.>...#...#...#...#...#...........#.#...#.#...#.#.......#
|
||||||
|
#.#.#.#.#.#.#.#.###.###.#.###.#########.#.###.###.#####.###.#.###.#.#.#.###.#.#.#.###v###.###.#.#.###.###.###########.#.#.#.#.###.#.#.#######
|
||||||
|
#...#...#...#...#...###.#...#.......###...#...#...#####...#.#.#...#.#.#.#...#.#.#.###...#...#...#...#...#.#...........#.#.#.#...#...#.......#
|
||||||
|
#################.#####.###.#######.#######.###.#########.#.#.#.###.#.#.#.###.#.#.#####.###.#######.###.#.#.###########.#.#.###.###########.#
|
||||||
|
###...#.........#.....#.....#.......#...###.....#.........#...#.....#...#.....#...#####...#.....#...#...#.#...........#.#.#.....#...........#
|
||||||
|
###.#.#.#######.#####.#######.#######.#.#########.#######################################.#####.#.###.###.###########.#.#.#######.###########
|
||||||
|
###.#.#.#.....#.......#...#...#.......#.......###...................#...#.................#.....#...#.....#...........#...###...#...#.......#
|
||||||
|
###.#.#.#.###.#########.#.#.###.#############.#####################.#.#.#.#################.#######.#######.#################.#.###.#.#####.#
|
||||||
|
#...#.#...###...........#.#.....#.............#...###...............#.#.#.................#.........#...###...........#.....#.#...#...#...#.#
|
||||||
|
#.###.###################.#######.#############.#.###.###############.#.#################.###########.#.#############.#.###.#.###.#####.#.#.#
|
||||||
|
#...#...###...#...........#.....#.........#.....#.#...#.....#...###...#.#.................###...#...#.#.#.............#...#.#...#.......#...#
|
||||||
|
###.###.###.#.#.###########.###.#########.#.#####.#.###.###.#.#.###.###.#.###################.#.#.#.#.#.#.###############.#.###.#############
|
||||||
|
###...#.#...#...###...#...#...#.........#.#.....#.#.....###...#...#...#.#...#.......#.....###.#.#.#.#.#.#.....#...#...###.#...#.....#...#...#
|
||||||
|
#####.#.#.#########.#.#.#.###.#########.#.#####.#.###############.###.#.###.#.#####.#.###.###.#.#.#.#.#.#####v#.#.#.#.###.###.#####.#.#.#.#.#
|
||||||
|
#...#.#.#.....#...#.#.#.#...#.........#...#...#.#...#...#.......#.###.#.###...#.....#.#...#...#...#.#.#...#.>.>.#...#...#.#...#...#...#...#.#
|
||||||
|
#.#.#.#.#####.#.#.#.#.#.###.#########.#####.#.#.###.#.#.#.#####.#.###.#.#######.#####.#.###.#######.#.###.#.#v#########.#.#.###.#.#########.#
|
||||||
|
#.#...#...#...#.#...#.#...#...#.......#...#.#.#...#.#.#.#...###...#...#...#...#.....#.#...#.......#.#.###...#...#.......#.#.###.#.#...#...#.#
|
||||||
|
#.#######.#.###.#####.###.###.#.#######.#.#.#.###.#.#.#.###v#######.#####.#.#.#####.#.###.#######.#.#.#########.#.#######.#.###.#.#.#.#v#.#.#
|
||||||
|
#...#...#...###...#...###.#...#...#.....#.#.#...#.#...#...>.>...###...#...#.#...###...#...#...#...#...###.......#.......#.#.#...#.#.#.>.#...#
|
||||||
|
###.#.#v#########.#.#####.#.#####.#.#####.#.###.#.#########v###.#####.#.###.###.#######.###.#.#.#########.#############.#.#.#.###.#.###v#####
|
||||||
|
#...#.#.>.###...#.#.#...#.#.#...#.#.....#.#.#...#.......###...#...###.#.###.#...#...###.#...#.#.#####...#.........#.....#.#.#.###.#.#...#...#
|
||||||
|
#.###.#v#.###.#.#.#.#.#.#.#.#.#.#v#####.#.#.#.#########.#####.###.###.#.###.#.###.#.###v#.###.#.#####.#.#########.#.#####.#.#.###.#.#.###.#.#
|
||||||
|
#.....#.#.#...#.#.#.#.#.#.#...#.>.>.#...#.#.#.....#.....#...#...#.#...#.#...#.#...#.#.>.>.#...#.#.....#...........#.#...#.#.#.###...#.....#.#
|
||||||
|
#######.#.#.###.#.#.#.#.#.#######v#.#.###.#.#####.#.#####.#.###.#.#.###.#.###.#.###.#.#v###.###.#.#################.#.#.#.#.#.#############.#
|
||||||
|
#...#...#.#.#...#.#.#.#.#.....#...#...#...#.....#...#.....#.....#...###.#.#...#.###.#.#.###...#.#.....#...#.......#.#.#.#.#.#.###...#.......#
|
||||||
|
#.#.#.###.#.#.###.#.#.#.#####.#.#######.#######.#####.#################.#.#.###.###.#.#.#####.#.#####.#.#.#.#####.#.#.#.#.#.#.###.#.#.#######
|
||||||
|
#.#...###...#.....#...#.#...#.#.......#...#...#...###...............#...#.#.#...###...#...#...#...#...#.#.#.#.....#...#...#.#.###.#.#.......#
|
||||||
|
#.#####################.#.#.#.#######.###.#.#.###.#################.#.###.#.#.###########.#.#####.#.###.#.#.#.#############.#.###.#.#######.#
|
||||||
|
#.#...........###.....#...#...#.......###...#.....#.................#...#.#...#...#...#...#.......#.#...#...#.......###...#...#...#.#.......#
|
||||||
|
#.#.#########.###.###.#########.###################.###################.#.#####.#.#.#.#.###########.#.#############.###.#.#####.###.#.#######
|
||||||
|
#...#.........#...#...#...#...#.......###...#.....#.............#.....#.#.#.....#...#.#...........#.#.#.............#...#.###...###.#.......#
|
||||||
|
#####.#########.###.###.#.#.#.#######.###.#.#.###.#############.#.###.#.#.#.#########.###########.#.#.#.#############.###.###.#####.#######.#
|
||||||
|
#.....#######...#...###.#.#.#.#.......#...#...#...###...........#.#...#...#.......###.....#.....#.#...#...#.........#...#.....#####.....#...#
|
||||||
|
#.###########.###.#####.#.#.#.#.#######.#######.#####.###########.#.#############.#######.#.###.#.#######.#.#######.###.###############.#.###
|
||||||
|
#.#.......#...#...#...#.#.#.#.#.......#...#.....#...#.............#...#...###...#.......#.#...#...#...#...#.#.......###...........#...#.#...#
|
||||||
|
#.#.#####.#.###.###.#.#.#.#.#.#######v###.#.#####.#.#################.#.#.###.#.#######.#.###.#####.#.#.###.#.###################.#.#.#.###.#
|
||||||
|
#...#.....#...#...#.#.#.#.#.#.#...#.>.>.#.#...###.#.....###.....#.....#.#.#...#.........#.....###...#.#.....#.........#.........#...#.#.#...#
|
||||||
|
#####.#######.###.#.#.#.#.#.#.#.#.#.#v#.#.###.###.#####.###.###.#.#####.#.#.#####################.###.###############.#.#######.#####.#.#.###
|
||||||
|
#.....###.....###.#.#.#.#.#.#...#...#.#.#...#...#.#...#...#...#.#...###.#.#.......#...###...#...#...#.#...#...........#.......#.#...#.#.#...#
|
||||||
|
#.#######.#######.#.#.#.#.#.#########.#.###.###.#.#.#.###.###.#.###.###.#.#######.#.#.###.#.#.#.###.#.#.#.#.#################.#.#.#.#.#.###.#
|
||||||
|
#.......#...#####...#...#...#.....###.#.#...#...#.#.#.....#...#.....#...#...#.....#.#...#.#.#.#.#...#.#.#.#.........###...#...#...#...#.....#
|
||||||
|
#######.###.#################.###.###.#.#.###.###.#.#######.#########.#####.#.#####.###.#.#.#.#.#.###.#.#.#########.###.#.#.#################
|
||||||
|
#.......###...#...#...###...#...#.#...#...#...#...#...#...#...#.....#.#.....#.....#.#...#.#.#.#.#...#.#.#.#.........#...#...#...###...#...###
|
||||||
|
#.###########.#.#.#.#.###.#.###.#.#.#######.###.#####.#.#.###.#.###.#.#.#########v#.#.###.#.#.#.###.#.#.#.#.#########.#######.#.###.#.#.#.###
|
||||||
|
#.#...###...#...#...#.#...#.....#.#.......#.#...#.....#.#.#...#...#.#.#.#.......>.>.#.....#.#.#.#...#...#.#.......###.......#.#.....#...#...#
|
||||||
|
#.#.#v###.#.#########.#.#########.#######.#.#.###.#####.#.#.#####.#.#.#.#.#######v#########.#.#.#.#######.#######.#########.#.#############.#
|
||||||
|
#.#.#.>...#...#...#...#.#.......#.#.......#...#...#...#.#.#...#...#.#.#...#...###.#.........#.#.#...#.....#...#...#...#...#.#.#.......#...#.#
|
||||||
|
#.#.#v#######.#.#.#.###.#.#####.#.#.###########.###.#.#.#.###v#.###.#.#####.#.###.#.#########.#.###.#.#####.#.#v###.#.#.#.#v#.#.#####.#.#.#.#
|
||||||
|
#...#...#...#...#.#...#...#####.#.#.......#...#.....#...#...>.>.###...#...#.#...#.#...#.....#.#.....#.....#.#.>.>...#.#.#.>.#.#.#####...#.#.#
|
||||||
|
#######.#.#.#####.###.#########.#.#######.#.#.###############v#########.#.#.###.#.###.#.###.#.###########.#.###v#####.#.###v#.#.#########.#.#
|
||||||
|
#.....#...#.....#.....###...#...#.........#.#.###...#...#...#...#.......#.#...#.#.###...###.#.......#.....#...#.....#.#.#...#.#.........#...#
|
||||||
|
#.###.#########.#########.#.#.#############.#.###.#.#.#.#.#.###.#.#######.###.#.#.#########.#######.#.#######.#####.#.#.#.###.#########.#####
|
||||||
|
#...#...........#...###...#.#...#...#...###.#.###.#...#.#.#.#...#.......#.....#...#...#.....#.....#.#.#...#...###...#...#.#...#...#.....#...#
|
||||||
|
###.#############.#.###.###.###.#.#.#.#.###.#.###.#####.#.#.#.#########.###########.#.#.#####.###.#.#.#.#.#.#####.#######.#.###.#.#.#####.#.#
|
||||||
|
###.#.......#.....#...#...#...#...#...#.#...#...#.....#.#.#.#.#.........#.........#.#.#.#...#...#.#.#.#.#.#.#.....###...#.#.#...#...#...#.#.#
|
||||||
|
###.#.#####.#.#######.###.###.#########.#.#####.#####.#.#.#.#.#.#########.#######.#.#.#.#.#.###.#.#.#.#.#.#.#.#######.#.#.#.#.#######.#.#.#.#
|
||||||
|
#...#.#.....#.#...#...###...#...........#.....#...#...#...#...#.......#...#.......#.#...#.#.#...#...#...#...#.....###.#.#...#.....#...#...#.#
|
||||||
|
#.###.#.#####.#.#.#.#######.#################.###.#.#################.#.###.#######.#####.#.#.###################.###.#.#########v#.#######.#
|
||||||
|
#.#...#.......#.#...#...###.............#####...#.#.....#...#...#...#...###...#...#...#...#...#...#.......#.....#...#.#...#...#.>.#.#.......#
|
||||||
|
#.#.###########v#####.#.###############.#######.#.#####.#.#.#.#.#.#.#########.#.#.###.#.#######.#.#.#####.#.###.###.#.###.#.#.#.#v#.#.#######
|
||||||
|
#.#.#.....#...#.>.#...#.#.............#.#.......#.......#.#.#.#.#.#.#.....###...#...#...###...#.#.#.#.....#...#.....#...#.#.#.#.#...#...#...#
|
||||||
|
#.#.#.###.#.#.#v#.#.###.#.###########.#.#.###############.#.#.#.#.#.#.###.#########.#######.#.#.#.#.#.#######.#########.#.#.#.#.#######.#.#.#
|
||||||
|
#...#...#...#...#...#...#.#.....#...#...#.....#...#...#...#.#.#.#.#.#.#...#.........#.....#.#.#.#.#.#.#...#...#...#.....#.#.#.#.#.......#.#.#
|
||||||
|
#######.#############.###.#.###.#.#.#########.#.#.#.#.#.###.#.#.#.#.#.#.###v#########.###.#.#.#.#.#.#.#.#.#.###.#.#.#####.#.#.#.#.#######.#.#
|
||||||
|
###...#...........#...###...###...#...#...###...#...#.#...#...#...#.#.#.#.>.>.....###.#...#.#.#.#.#.#.#.#.#.....#.#.....#...#.#.#.#.......#.#
|
||||||
|
###.#.###########.#.#################.#.#.###########v###.#########.#.#.#.#v#####.###.#.###.#.#.#.#.#.#.#.#######v#####.#####.#.#.#.#######.#
|
||||||
|
#...#...#.......#.#...###...#.........#.#.###...###.>.>...###...###.#.#...#...###.....#...#.#.#.#.#.#.#.#.#...#.>.>...#.....#...#.#.#.......#
|
||||||
|
#.#####.#.#####.#.###.###.#.#.#########.#.###.#.###.#v#######.#.###.#.#######.###########.#.#.#.#.#.#.#.#.#.#.#.#v###.#####.#####.#.#.#######
|
||||||
|
#.....#.#...###.#.###.....#.#.....#...#.#...#.#.#...#.#.....#.#...#.#.#...###.......#.....#.#...#.#.#.#.#.#.#...#...#...#...#...#...#.......#
|
||||||
|
#####.#.###.###.#.#########.#####.#.#.#.###.#.#.#.###.#.###.#.###.#.#.#.#.#########.#.#####.#####.#.#.#.#.#.#######.###.#.###.#.###########.#
|
||||||
|
#.....#...#...#...#.........###...#.#.#...#...#.#.###.#...#...#...#.#.#.#...........#...#...#.....#.#...#...###...#...#...###.#.........#...#
|
||||||
|
#.#######.###.#####.###########v###.#.###.#####.#.###.###.#####.###.#.#.###############.#.###.#####.###########.#.###.#######.#########.#.###
|
||||||
|
#...#...#...#.....#.#...#.....>.>.#.#...#.....#.#...#.....#...#.###...#.#...........#...#...#.....#.#.....###...#...#.....#...#.......#...###
|
||||||
|
###.#.#.###.#####.#.#.#.#.#####v#.#.###.#####.#.###.#######.#.#.#######.#.#########.#.#####.#####.#.#.###.###.#####.#####.#.###.#####.#######
|
||||||
|
###.#.#...#.#.....#...#.#.#.....#.#...#.#.....#.....#.......#.#.....#...#.#.........#.....#.....#.#.#...#.....#...#.......#.....#...#.......#
|
||||||
|
###.#.###.#.#.#########.#.#.#####.###.#.#.###########.#######.#####.#.###.#.#############.#####.#.#.###.#######.#.###############.#.#######.#
|
||||||
|
###...#...#.#.#.......#...#.....#.....#.#.#...###...#...#...#...#...#.....#.............#...#...#...###.......#.#.....#...#...#...#.#...#...#
|
||||||
|
#######.###.#.#.#####.#########.#######.#.#.#.###.#.###.#.#.###.#.#####################.###.#.###############.#.#####.#.#.#.#.#.###.#.#.#.###
|
||||||
|
#.......###...#.....#.###.....#.......#...#.#.#...#...#...#...#.#.#.................#...###...#.............#...#.....#.#...#.#...#...#...###
|
||||||
|
#.#################.#.###.###.#######.#####.#.#.#####.#######.#.#.#.###############.#.#########.###########.#####.#####.#####.###.###########
|
||||||
|
#.#.......#.........#...#...#.........###...#.#...#...#.......#...#...............#.#.........#...........#.......###...#.....#...#.........#
|
||||||
|
#.#.#####.#.###########.###.#############.###.###.#.###.#########################.#.#########.###########.###########.###.#####.###.#######.#
|
||||||
|
#.#.###...#...........#...#.....###...###.#...#...#...#.........#.....#...#.......#...........#...#...###.....###...#.#...#...#.....#.......#
|
||||||
|
#.#.###.#############.###.#####.###.#.###.#.###.#####.#########.#.###.#.#.#.###################.#.#.#.#######.###.#.#.#.###.#.#######.#######
|
||||||
|
#...#...###...#...###.#...#...#.....#.....#.#...#.....#.........#...#.#.#.#.......#...#...###...#...#.#.....#...#.#.#.#.###.#.###...#.......#
|
||||||
|
#####.#####.#.#.#.###.#.###.#.#############v#.###.#####.###########.#.#.#.#######.#.#.#.#.###.#######.#.###.###.#.#.#.#.###.#.###.#.#######.#
|
||||||
|
#.....#...#.#.#.#.#...#...#.#...#...#...#.>.>.#...#...#.#...#...#...#...#.........#.#...#...#.#.....#...#...#...#.#.#.#...#.#.#...#.#.......#
|
||||||
|
#.#####.#.#.#.#.#.#.#####.#.###.#.#.#.#.#.#####.###.#.#.#.#.#.#.#.#################.#######.#.#.###.#####.###.###.#.#.###.#.#.#.###.#.#######
|
||||||
|
#.#...#.#.#.#.#.#...#.....#...#.#.#.#.#.#.#...#.....#.#...#...#.#...#.....#...#...#.#.......#...###.....#...#...#.#.#.#...#.#.#...#.#.....###
|
||||||
|
#.#.#.#.#.#.#.#.#####.#######.#.#.#.#.#.#.#.#.#######.#########.###.#.###.#.#.#.#.#.#.#################.###.###.#.#.#.#.###.#.###.#.#####v###
|
||||||
|
#.#.#...#...#.#.#...#.....#...#.#.#.#.#.#.#.#.........###.......###...###...#...#.#.#.....#...#.....#...#...#...#.#...#...#.#.#...#.#...>.###
|
||||||
|
#.#.#########.#.#.#.#####.#.###.#.#.#.#.#.#.#############.#######################.#.#####.#.#.#.###.#.###.###.###.#######.#.#.#.###.#.###v###
|
||||||
|
#.#.#.........#...#.#.....#.#...#.#.#.#.#.#.........#...#...#####...###...#.......#...#...#.#.#.#...#...#.###.###.....###.#.#.#.#...#.#...###
|
||||||
|
#.#.#.#############.#.#####.#.###.#.#.#.#.#########.#.#.###v#####.#.###.#.#.#########.#.###.#.#.#.#####.#.###v#######.###.#.#.#.#.###.#.#####
|
||||||
|
#...#...#...#...#...#.#...#.#...#.#.#.#...#.........#.#.#.>.>.###.#.###.#.#...#.....#.#...#.#...#.#...#.#.#.>.>.#...#...#.#.#...#...#.#.#...#
|
||||||
|
#######.#.#.#.#.#.###.#.#.#.###.#.#.#.#####.#########.#.#.###.###.#.###.#.###v#.###.#.###.#.#####.#.#.#.#.#.###.#.#.###.#.#.#######.#.#.#.#.#
|
||||||
|
#.......#.#.#.#.#...#.#.#.#.###.#.#.#.#.....#...#...#.#.#...#.#...#.#...#.#.>.>.###.#.#...#.#.....#.#.#.#.#...#.#.#.#...#.#.......#.#.#.#.#.#
|
||||||
|
#.#######.#.#.#.###.#.#.#.#.###.#.#.#.#.#####.#.#.#.#.#.###.#.#.###.#.###.#.#######.#.#.###.#.#####.#.#.#.###.#.#.#.#.###.#######.#.#.#.#.#.#
|
||||||
|
#.........#...#.....#...#...###...#...#.......#...#...#.....#...###...###...#######...#.....#.......#...#.....#...#...###.........#...#...#.#
|
||||||
|
###########################################################################################################################################.#
|
|
@ -0,0 +1,23 @@
|
||||||
|
#.#####################
|
||||||
|
#.......#########...###
|
||||||
|
#######.#########.#.###
|
||||||
|
###.....#.>.>.###.#.###
|
||||||
|
###v#####.#v#.###.#.###
|
||||||
|
###.>...#.#.#.....#...#
|
||||||
|
###v###.#.#.#########.#
|
||||||
|
###...#.#.#.......#...#
|
||||||
|
#####.#.#.#######.#.###
|
||||||
|
#.....#.#.#.......#...#
|
||||||
|
#.#####.#.#.#########v#
|
||||||
|
#.#...#...#...###...>.#
|
||||||
|
#.#.#v#######v###.###v#
|
||||||
|
#...#.>.#...>.>.#.###.#
|
||||||
|
#####v#.#.###v#.#.###.#
|
||||||
|
#.....#...#...#.#.#...#
|
||||||
|
#.#########.###.#.#.###
|
||||||
|
#...###...#...#...#.###
|
||||||
|
###.###.#.###v#####v###
|
||||||
|
#...#...#.#.>.>.#.>.###
|
||||||
|
#.###.###.#.###.#.#v###
|
||||||
|
#.....###...###...#...#
|
||||||
|
#####################.#
|
|
@ -0,0 +1,109 @@
|
||||||
|
import sys
|
||||||
|
input = sys.stdin
|
||||||
|
map = []
|
||||||
|
for line in input:
|
||||||
|
map.append(list(line.strip()))
|
||||||
|
|
||||||
|
# find points where the path forks
|
||||||
|
|
||||||
|
def neighbors(x,y):
|
||||||
|
n = []
|
||||||
|
c = map[y][x]
|
||||||
|
for i,j in [(y-1,x),(y+1,x),(y,x-1),(y,x+1)]:
|
||||||
|
if c == '<' and not j < x: continue
|
||||||
|
if c == '>' and not j > x: continue
|
||||||
|
if c == '^' and not i < y: continue
|
||||||
|
if c == 'v' and not i > y: continue
|
||||||
|
if 0 <= i < len(map) and 0 <= j < len(map[i]):
|
||||||
|
if map[i][j] != '#':
|
||||||
|
n.append((j,i))
|
||||||
|
return n
|
||||||
|
|
||||||
|
spots = []
|
||||||
|
for i in range(len(map)):
|
||||||
|
for j in range(len(map[i])):
|
||||||
|
if map[i][j] == '.':
|
||||||
|
n = neighbors(j,i)
|
||||||
|
if len(n) not in (0,2):
|
||||||
|
spots.append((j,i))
|
||||||
|
|
||||||
|
# construct a graph of paths between fork points
|
||||||
|
|
||||||
|
def find_paths(start,spots):
|
||||||
|
q = [(0,start)]
|
||||||
|
dist = {}
|
||||||
|
r = []
|
||||||
|
while q:
|
||||||
|
q.sort()
|
||||||
|
n,(x,y) = q.pop(0)
|
||||||
|
if (x,y) in dist:
|
||||||
|
continue
|
||||||
|
dist[x,y] = n
|
||||||
|
#print(x,y,neighbors(x,y))
|
||||||
|
if (x,y) in spots and (x,y) != start:
|
||||||
|
r.append((n,(x,y)))
|
||||||
|
else:
|
||||||
|
for j,i in neighbors(x,y):
|
||||||
|
if (j,i) not in dist:
|
||||||
|
q.append((n+1,(j,i)))
|
||||||
|
|
||||||
|
return r
|
||||||
|
|
||||||
|
G = {}
|
||||||
|
for p in spots:
|
||||||
|
G[p] = find_paths(p,spots)
|
||||||
|
|
||||||
|
print(G)
|
||||||
|
|
||||||
|
|
||||||
|
# find start position
|
||||||
|
|
||||||
|
for i,c in enumerate(map[0]):
|
||||||
|
if c == '.':
|
||||||
|
start = (i,0)
|
||||||
|
break
|
||||||
|
|
||||||
|
# algorithm for finding the shortest path between points in a
|
||||||
|
# a weighted directed acyclic graph
|
||||||
|
#
|
||||||
|
# from wikipedia:
|
||||||
|
# https://en.wikipedia.org/w/index.php?title=Topological_sorting&oldid=1188428695#Application_to_shortest_path_finding
|
||||||
|
#
|
||||||
|
# this is a variant of the bellman-ford and shortest path faster algorithms
|
||||||
|
# except we can take some shortcuts because the graph is acyclic
|
||||||
|
#
|
||||||
|
# we implicitly invert the weights of the graph so that, in effect,
|
||||||
|
# it finds the longest path instead
|
||||||
|
|
||||||
|
def topo(G, start):
|
||||||
|
t = []
|
||||||
|
seen = set()
|
||||||
|
tmp = set()
|
||||||
|
def visit(n):
|
||||||
|
if n in seen:
|
||||||
|
return
|
||||||
|
if n in tmp:
|
||||||
|
raise Exception("cycle with %s %s" % (n,tmp))
|
||||||
|
tmp.add(n)
|
||||||
|
for _, p in G[n]:
|
||||||
|
visit(p)
|
||||||
|
tmp.remove(n)
|
||||||
|
seen.add(n)
|
||||||
|
t.append(n)
|
||||||
|
visit(start)
|
||||||
|
t.reverse()
|
||||||
|
return t
|
||||||
|
|
||||||
|
print("topo=",topo(G,start))
|
||||||
|
|
||||||
|
|
||||||
|
dist = {n: float('-inf') for n in G}
|
||||||
|
dist[start] = 0
|
||||||
|
T = topo(G, start)
|
||||||
|
for u in T:
|
||||||
|
for n,v in G[u]:
|
||||||
|
if dist[v] < dist[u] + n:
|
||||||
|
dist[v] = dist[u] + n
|
||||||
|
|
||||||
|
print(dist)
|
||||||
|
print(max(dist.values()))
|
|
@ -0,0 +1,84 @@
|
||||||
|
import sys
|
||||||
|
input = sys.stdin
|
||||||
|
map = []
|
||||||
|
for line in input:
|
||||||
|
map.append(list(line.strip()))
|
||||||
|
|
||||||
|
# construct a graph
|
||||||
|
for i,c in enumerate(map[0]):
|
||||||
|
if c == '.':
|
||||||
|
start = (i,0)
|
||||||
|
break
|
||||||
|
|
||||||
|
def neighbors(x,y):
|
||||||
|
n = []
|
||||||
|
c = map[y][x]
|
||||||
|
for i,j in [(y-1,x),(y+1,x),(y,x-1),(y,x+1)]:
|
||||||
|
if 0 <= i < len(map) and 0 <= j < len(map[i]):
|
||||||
|
if map[i][j] != '#':
|
||||||
|
n.append((j,i))
|
||||||
|
return n
|
||||||
|
|
||||||
|
spots = []
|
||||||
|
for i in range(len(map)):
|
||||||
|
for j in range(len(map[i])):
|
||||||
|
if map[i][j] in '.<>v^':
|
||||||
|
n = neighbors(j,i)
|
||||||
|
if len(n) not in (0,2):
|
||||||
|
spots.append((j,i))
|
||||||
|
|
||||||
|
def reachable(start,spots):
|
||||||
|
q = [(0,start)]
|
||||||
|
dist = {}
|
||||||
|
r = []
|
||||||
|
while q:
|
||||||
|
q.sort()
|
||||||
|
n,(x,y) = q.pop(0)
|
||||||
|
if (x,y) in dist:
|
||||||
|
continue
|
||||||
|
#print(x,y,neighbors(x,y))
|
||||||
|
if (x,y) in spots and (x,y) != start:
|
||||||
|
r.append((n,(x,y)))
|
||||||
|
else:
|
||||||
|
dist[x,y] = n
|
||||||
|
for j,i in neighbors(x,y):
|
||||||
|
if (j,i) not in dist:
|
||||||
|
q.append((n+1,(j,i)))
|
||||||
|
|
||||||
|
return r
|
||||||
|
|
||||||
|
G = {}
|
||||||
|
for p in spots:
|
||||||
|
G[p] = reachable(p,spots)
|
||||||
|
|
||||||
|
from pprint import pprint
|
||||||
|
pprint(G)
|
||||||
|
|
||||||
|
for p in G:
|
||||||
|
if p[1] == len(map)-1:
|
||||||
|
goal = p
|
||||||
|
|
||||||
|
print("start=",start)
|
||||||
|
print("goal=",goal)
|
||||||
|
|
||||||
|
print("brute force...")
|
||||||
|
|
||||||
|
|
||||||
|
def longest(p, seen, depth):
|
||||||
|
best = -10000000
|
||||||
|
b = []
|
||||||
|
if p == goal:
|
||||||
|
return 0,[]
|
||||||
|
if p in seen:
|
||||||
|
raise Error("alredy seen")
|
||||||
|
seen.add(p)
|
||||||
|
for n,q in G[p]:
|
||||||
|
if q not in seen:
|
||||||
|
t,path = longest(q, seen, depth+1)
|
||||||
|
if t+n > best:
|
||||||
|
best = t+n
|
||||||
|
b = [q]+path
|
||||||
|
seen.remove(p)
|
||||||
|
return best, b
|
||||||
|
|
||||||
|
print(longest(start,set(),0))
|
|
@ -0,0 +1,300 @@
|
||||||
|
197869613734967, 292946034245705, 309220804687650 @ 150, 5, -8
|
||||||
|
344503265587754, 394181872935272, 376338710786779 @ -69, 11, -46
|
||||||
|
293577250654200, 176398758803665, 272206447651388 @ -17, 101, 26
|
||||||
|
227838629808858, 367321356713508, 425398385268402 @ 65, 16, -116
|
||||||
|
297081053375721, 388848043410867, 296378505058047 @ -18, -39, 33
|
||||||
|
249754396059978, 259753263131310, 219900405025431 @ 91, -50, 168
|
||||||
|
286919351742593, 228761881251504, 290165658974486 @ 12, -276, -96
|
||||||
|
286311847445390, 152489168079800, 315302094634181 @ 29, -35, -385
|
||||||
|
288820028461659, 150144138610263, 536519846895513 @ -8, 281, -209
|
||||||
|
351363783085246, 431469241705574, 539320870624397 @ -78, -38, -232
|
||||||
|
520741901046000, 486075674341440, 369706315508673 @ -232, -39, -23
|
||||||
|
296908684971710, 177204123362510, 281142112744853 @ -31, 49, -22
|
||||||
|
464778874251030, 349646113957650, 294333434112573 @ -189, 77, 47
|
||||||
|
223080581415839, 347888203813250, 182953206412142 @ 62, 70, 164
|
||||||
|
248758455691314, 346762126256074, 336814976102123 @ 67, -112, -64
|
||||||
|
305759617719566, 278636683190318, 293811872846781 @ -37, 7, 13
|
||||||
|
261069455438014, 224906346121182, 312469904696747 @ 213, -558, -355
|
||||||
|
175747324785094, 297435412745142, 423525775964281 @ 111, 126, -90
|
||||||
|
288744178785162, 132122659522473, 258206348685239 @ 25, -21, 9
|
||||||
|
295813662568370, 254283641864230, 293357741330673 @ -22, -70, -20
|
||||||
|
154949963866962, 287525861043030, 236828184910989 @ 212, 30, 115
|
||||||
|
249405710994408, 288399639351476, 278889781077279 @ 40, 107, 58
|
||||||
|
261619805679875, 455908136153330, 353090693287483 @ 18, -10, -7
|
||||||
|
330456261567276, 292626086331062, 325102953175383 @ -98, -94, -74
|
||||||
|
299424195935038, 510703474048950, 292252992375285 @ -19, -90, 49
|
||||||
|
289238752547322, 290180922496209, 356685344768994 @ -7, 23, -82
|
||||||
|
280872765743550, 201108566398725, 258965390526423 @ 21, 41, 69
|
||||||
|
275979615869275, 148504223460275, 255005089561549 @ 134, -85, 59
|
||||||
|
387325456061188, 345202312209860, 329940617813946 @ -205, -160, -68
|
||||||
|
234283292154810, 377522770250222, 301277403416473 @ 64, -28, 26
|
||||||
|
392077346074701, 495085824379504, 530452270485388 @ -110, -56, -184
|
||||||
|
303921565996632, 184162452416208, 288112084900062 @ -77, -104, -106
|
||||||
|
279914507067786, 272090396870874, 137037141013257 @ 16, -57, 354
|
||||||
|
265091370503554, 259490553837145, 294987941742668 @ 41, 25, 6
|
||||||
|
277324636544734, 487331020226038, 542928614247113 @ 5, -98, -234
|
||||||
|
261897775442772, 280478694349944, 288319637735007 @ 23, 128, 49
|
||||||
|
282398761112085, 136973576351520, 265394454424968 @ 74, 24, -36
|
||||||
|
347154810802281, 412858527953970, 218797176940017 @ -72, -10, 127
|
||||||
|
342824292561169, 362027652434593, 377103448331376 @ -88, -59, -98
|
||||||
|
303342712558226, 143531465945890, 263215337554529 @ -87, 70, 15
|
||||||
|
275380876849407, 104449535339038, 273473922524719 @ 142, 322, -115
|
||||||
|
285636284070876, 35217949523578, 152994957457591 @ -5, 398, 189
|
||||||
|
294685250599224, 122742414916884, 261780925324521 @ -54, 57, -55
|
||||||
|
314169716569136, 156663661505480, 455739759596215 @ -64, 205, -390
|
||||||
|
300983303095740, 133957419148920, 261097837194423 @ -88, 79, 12
|
||||||
|
158215971846888, 339904610013018, 239642086049769 @ 146, 52, 105
|
||||||
|
274536031464654, 65723174697222, 354345054787149 @ 46, 456, -251
|
||||||
|
327841767697610, 339044435628830, 283110688052013 @ -66, -28, 43
|
||||||
|
330929514175462, 504607737339754, 162507010450204 @ -67, -242, 218
|
||||||
|
276948325793030, 149100573461750, 201857443244268 @ 77, 58, 388
|
||||||
|
260677243049794, 257886873526064, 401788966601771 @ 35, 101, -132
|
||||||
|
238764538535158, 239639934534678, 427263483474075 @ 45, 186, -95
|
||||||
|
294271217851860, 279973777207680, 317358232153488 @ -21, -348, -162
|
||||||
|
240944232332486, 140602546133218, 173583047033163 @ 233, 152, 466
|
||||||
|
299283097756530, 171124444230390, 232178177063823 @ -57, -78, 208
|
||||||
|
309506824723454, 193340344086617, 325677550626124 @ -43, 169, -42
|
||||||
|
313257508666173, 193901329414071, 312656919318366 @ -82, 33, -110
|
||||||
|
562238344970567, 521281584140464, 554003079517479 @ -274, -76, -203
|
||||||
|
298867675092622, 413106341656246, 319408082070669 @ -18, 29, 25
|
||||||
|
370336364999228, 303102716871354, 236944508864721 @ -108, 84, 109
|
||||||
|
280537764410923, 102390738316029, 173484039005415 @ 72, 339, 673
|
||||||
|
292740513454551, 187470172834775, 251899331250560 @ -14, 95, 90
|
||||||
|
311208406217498, 244876960258574, 384930971208158 @ -63, -46, -264
|
||||||
|
282757042955406, 134469559669654, 254384177119565 @ 58, 91, 69
|
||||||
|
287704452860064, 121558528808556, 254224870158150 @ 23, 176, 68
|
||||||
|
275586065064718, 113832932538934, 250412578315621 @ 231, 176, 108
|
||||||
|
280638278276355, 123874819227913, 281800323086541 @ 94, 137, -197
|
||||||
|
493700702104308, 528380743592954, 350707777563697 @ -284, -244, -43
|
||||||
|
254273430941810, 246127394458430, 305873005421113 @ 42, 128, 14
|
||||||
|
189195001805430, 327268786344945, 319530516675018 @ 93, 103, 22
|
||||||
|
325888830117990, 244873525901106, 384752213134803 @ -151, -248, -454
|
||||||
|
401086712195530, 418733514897265, 338101695130098 @ -303, -511, -140
|
||||||
|
230647849488649, 435350980629356, 268731710232233 @ 60, -56, 71
|
||||||
|
295369648182904, 93151204130694, 263077240181359 @ -45, 426, -15
|
||||||
|
418829662328400, 326986769471280, 418797738573353 @ -233, -60, -201
|
||||||
|
251815856690310, 194585137396830, 271694989005693 @ 254, -275, -43
|
||||||
|
320084250980490, 430363982553600, 272379689756425 @ -41, -15, 69
|
||||||
|
272457208243458, 108653772697770, 297045940728273 @ 103, 300, -179
|
||||||
|
255460977490872, 377835158364426, 281221792538313 @ 50, -132, 41
|
||||||
|
186732804203969, 179181818690891, 296305762653620 @ 132, 227, 30
|
||||||
|
363360218049360, 457270542750130, 287865571450673 @ -86, -40, 53
|
||||||
|
298636823643895, 142941004154310, 378997929287068 @ -28, 234, -220
|
||||||
|
382702722487998, 513245966052726, 543441464074293 @ -103, -84, -204
|
||||||
|
228608403903005, 303829275389505, 355570720480703 @ 126, -105, -135
|
||||||
|
260219312780930, 137397315917050, 266549922818113 @ 230, 71, -24
|
||||||
|
304643969715550, 224581934648158, 272949803301789 @ -51, -43, 25
|
||||||
|
268015204288250, 441520660598230, 343626399860368 @ 17, -70, -18
|
||||||
|
238174446949074, 332863636964670, 357987268083903 @ 87, -90, -104
|
||||||
|
228308485346835, 276785427440115, 170815415970033 @ 124, -39, 263
|
||||||
|
314650396447557, 123914003921973, 213241437994668 @ -80, 269, 206
|
||||||
|
297854289680094, 281401828797270, 371366863778853 @ -19, 100, -64
|
||||||
|
286065635483838, 197701133867714, 271157012746365 @ 13, -73, 7
|
||||||
|
250655739928110, 196904819501880, 302810006057913 @ 29, 239, 41
|
||||||
|
266668785798760, 448611859404060, 414549057547295 @ 14, -15, -72
|
||||||
|
322922202039681, 288346524052986, 321238043979297 @ -124, -338, -161
|
||||||
|
293057502181848, 156792975363520, 342205463462629 @ -17, 100, -301
|
||||||
|
308717176917930, 432612150091956, 137325020082819 @ -31, -56, 225
|
||||||
|
281337106418164, 131556887203378, 394376757970843 @ 6, 284, -144
|
||||||
|
330503962382908, 330818974149580, 537427943951777 @ -58, 55, -255
|
||||||
|
283277882485918, 140980016640358, 250970251275309 @ 77, -62, 97
|
||||||
|
263087598676614, 91780184771073, 292766760310263 @ 93, 373, -59
|
||||||
|
278997311530576, 271220323025157, 298776258201767 @ 11, 39, 9
|
||||||
|
290282187857252, 90415486230079, 469397950757119 @ -9, 349, -223
|
||||||
|
256747945850094, 323730245582688, 328245791702091 @ 45, -23, -32
|
||||||
|
401181849440357, 451034523457105, 234309567496232 @ -208, -295, 122
|
||||||
|
308723752435696, 115715106908199, 370471287969368 @ -49, 303, -174
|
||||||
|
350829907284000, 410154732609660, 529415646366563 @ -77, -12, -219
|
||||||
|
419009202317788, 512491677981588, 547814498224699 @ -210, -309, -372
|
||||||
|
311615054184480, 231690664406384, 357030646855481 @ -56, 41, -147
|
||||||
|
304792391244741, 337785561648414, 131083793921031 @ -50, -366, 449
|
||||||
|
206420199739566, 127278272054270, 146756457401286 @ 133, 290, 268
|
||||||
|
270910705904663, 228152407296912, 221757636662076 @ 12, 192, 124
|
||||||
|
300969936669270, 134288269050258, 499856005855185 @ -41, 231, -710
|
||||||
|
346853099200626, 400507954958115, 312124090163436 @ -103, -165, -10
|
||||||
|
295655922433878, 136151138335002, 251210251002099 @ -47, 36, 94
|
||||||
|
392730607704625, 423781125044385, 516945102596158 @ -118, -9, -190
|
||||||
|
69403706384776, 184624597681024, 184639589308473 @ 288, 221, 181
|
||||||
|
66252602357374, 281405359792914, 30983356670417 @ 221, 147, 318
|
||||||
|
287993442160185, 228594083593680, 261604045844313 @ 8, -316, 39
|
||||||
|
314015168824601, 218762406294299, 297215373888999 @ -102, -139, -95
|
||||||
|
326752500563416, 353810276040186, 488516122962329 @ -64, -48, -267
|
||||||
|
258926906195649, 297757458431104, 224543898991682 @ 46, -8, 138
|
||||||
|
335842594299150, 354523823783860, 369336538703853 @ -83, -79, -101
|
||||||
|
288526789357971, 121038469208217, 258752869918026 @ 40, 47, -26
|
||||||
|
108328693782431, 343573100192480, 173790439071324 @ 180, 80, 172
|
||||||
|
190081526928030, 380079554486550, 364097619506013 @ 165, -149, -104
|
||||||
|
250948371088939, 296401339516958, 136026529945132 @ 38, 98, 230
|
||||||
|
351639656315755, 418597373928239, 322874990426896 @ -106, -169, -22
|
||||||
|
256527707312850, 265251465370026, 92231595436701 @ 49, 54, 363
|
||||||
|
243482352003871, 262121028939334, 375839029327665 @ 96, -22, -185
|
||||||
|
298593292934625, 339458062356441, 214617146154333 @ -26, -181, 171
|
||||||
|
275150906378238, 311632676774493, 263415384348696 @ 21, -73, 68
|
||||||
|
320596173865085, 381290990425590, 219310185443898 @ -46, -6, 130
|
||||||
|
177898665297750, 226849892269620, 160180756743033 @ 253, 44, 303
|
||||||
|
279116256628275, 146651840207353, 282879798100090 @ 124, -133, -246
|
||||||
|
392635760919870, 333295381854834, 442746711116196 @ -171, -34, -212
|
||||||
|
292548629428628, 122772229153350, 255776774836727 @ -22, 90, 38
|
||||||
|
544799759489502, 337391467488474, 361407860304663 @ -299, 64, -34
|
||||||
|
292322626234629, 138777764194865, 265324258794703 @ -20, -155, -99
|
||||||
|
282965997263942, 200583086862102, 288222750366121 @ 17, 18, -27
|
||||||
|
184123754458512, 298801270442925, 312681619432842 @ 135, 65, 8
|
||||||
|
294040563055029, 390459835311429, 430929964653284 @ -14, -33, -136
|
||||||
|
277956000745130, 354560401734564, 304340564999986 @ 9, -36, 14
|
||||||
|
167135982400842, 222756086467026, 67877440945953 @ 128, 197, 296
|
||||||
|
242759244348998, 449964433573166, 378310609379989 @ 38, -17, -36
|
||||||
|
239198436794010, 251471676042330, 376042668463923 @ 99, 20, -170
|
||||||
|
208612278954525, 286324378939317, 337304149796031 @ 204, -143, -131
|
||||||
|
277799030839086, 399218651107929, 368577064839678 @ 5, -11, -44
|
||||||
|
322118735266236, 290641269989004, 383487802302959 @ -53, 72, -91
|
||||||
|
256593963025854, 334513771019582, 294656480526811 @ 37, 14, 32
|
||||||
|
329599248877570, 197922370698045, 404258355865923 @ -87, 141, -215
|
||||||
|
292246235199542, 336476575154758, 294198436012381 @ -12, -74, 17
|
||||||
|
223046830666095, 222297021590310, 331293449149998 @ 174, 10, -124
|
||||||
|
257128556061390, 316985972417478, 316019421290157 @ 34, 52, 7
|
||||||
|
296823104251365, 73266965970672, 208843642987443 @ -46, 536, 381
|
||||||
|
186762232661930, 414021046203320, 181890680360523 @ 111, -31, 172
|
||||||
|
281676511806954, 68066126010342, 261288970575417 @ 151, 906, -67
|
||||||
|
303757637395870, 217457431464550, 319780204418413 @ -42, 38, -84
|
||||||
|
293998547622634, 157696363761326, 266947971288341 @ -24, 28, 5
|
||||||
|
303236697587634, 75782198507708, 164239911128339 @ -53, 431, 408
|
||||||
|
451884353787348, 347734285669926, 260867084065575 @ -200, 42, 80
|
||||||
|
212107079473842, 222514154994394, 227588059381085 @ 175, 52, 147
|
||||||
|
297742727268150, 210177653776632, 266421092954811 @ -31, -21, 42
|
||||||
|
297742449578916, 460871887542983, 360850072296921 @ -17, -23, -17
|
||||||
|
246490205901585, 447966753158365, 404149065570053 @ 34, -13, -61
|
||||||
|
428537057381550, 259393531649550, 451019171242533 @ -199, 116, -183
|
||||||
|
230092531193395, 450084861735895, 444545815810863 @ 56, -47, -119
|
||||||
|
293207906123064, 160980917757360, 246454854637719 @ -24, -155, 134
|
||||||
|
330685508240028, 153706232993909, 389627424871162 @ -113, 199, -270
|
||||||
|
248047109715670, 337914006012422, 417308660816485 @ 59, -46, -175
|
||||||
|
216999103947558, 245599796562690, 223461139247949 @ 223, -115, 179
|
||||||
|
366297428313467, 413353588098657, 493826636982846 @ -84, 27, -146
|
||||||
|
231542611031360, 292569000471730, 274734344419188 @ 59, 110, 64
|
||||||
|
340347932799756, 315437837619245, 423718776869272 @ -65, 95, -100
|
||||||
|
293050173321162, 191021302380190, 246711130315731 @ -17, -50, 112
|
||||||
|
326025761363193, 172309744218396, 394171710776000 @ -44, 264, -46
|
||||||
|
271911632195370, 173127769509796, 287671653632109 @ 199, -409, -293
|
||||||
|
353537780577862, 239571404654630, 342304790868225 @ -193, -70, -176
|
||||||
|
324487646920386, 339596736303303, 353856883304097 @ -79, -159, -121
|
||||||
|
278896401492370, 63361613140749, 81017522141184 @ 9, 393, 358
|
||||||
|
225736349588673, 244172924845407, 261079971175602 @ 148, -9, 68
|
||||||
|
335019211033523, 549163897737994, 323974350512217 @ -90, -482, -41
|
||||||
|
273084828613785, 368247857134458, 327369121734939 @ 14, -26, -11
|
||||||
|
282919220491465, 238779234002470, 288053477363518 @ 18, -118, -30
|
||||||
|
354058605830958, 477930645861318, 260207539202753 @ -83, -102, 81
|
||||||
|
291051493163588, 302693482748314, 336250827851927 @ -10, 8, -46
|
||||||
|
302136599948718, 298978042966246, 296462432706439 @ -35, -118, -12
|
||||||
|
246182100012654, 246207921568038, 309324103978749 @ 137, -134, -97
|
||||||
|
317720999662541, 172802533356978, 227678735734293 @ -142, -18, 211
|
||||||
|
323699470218957, 169723592095398, 326967128690214 @ -42, 266, 18
|
||||||
|
279718134579816, 151098046069860, 260123112421701 @ 67, 20, 35
|
||||||
|
286560024839556, 183250245674160, 276490166392059 @ 6, 65, 8
|
||||||
|
284516964059384, 214466825018483, 236586492406895 @ 11, -11, 137
|
||||||
|
265538863149330, 285643372016864, 203200189566570 @ 49, -88, 202
|
||||||
|
315439634532616, 345983154688094, 337582523323315 @ -82, -394, -166
|
||||||
|
382298777074318, 477442346283588, 450602496466227 @ -123, -132, -155
|
||||||
|
297488738575314, 203351014020870, 348386146910451 @ -25, 90, -142
|
||||||
|
340290418301214, 449513248539522, 198870094032717 @ -107, -353, 195
|
||||||
|
306926403020702, 264085526810342, 92228312283885 @ -63, -217, 634
|
||||||
|
285753943112325, 127042159058415, 257239181283243 @ 70, 9, 13
|
||||||
|
285194367136032, 196772148977019, 211250828871261 @ 7, 71, 203
|
||||||
|
280186615268560, 149530576342430, 534995842588463 @ 8, 254, -378
|
||||||
|
304353922021305, 394393007848145, 384490789906568 @ -38, -289, -192
|
||||||
|
276932969721078, 169211821049682, 305109645772069 @ 115, -231, -367
|
||||||
|
289174220120902, 280784186657998, 207869733319273 @ -7, 46, 161
|
||||||
|
273892733265056, 471164879168023, 169977050453577 @ 23, -373, 247
|
||||||
|
420774824279725, 513808363492455, 512932397542668 @ -214, -315, -320
|
||||||
|
222723614649462, 95829242236326, 431190945690693 @ 60, 338, -94
|
||||||
|
290050919046082, 421708455777732, 355150978564205 @ -9, -63, -37
|
||||||
|
256163702364955, 338170915595795, 323136695446578 @ 50, -73, -32
|
||||||
|
283530824407774, 180918120140422, 282063596074173 @ 21, 26, -29
|
||||||
|
305330693609626, 194608897625492, 280156456003183 @ -85, -163, -64
|
||||||
|
350867211940286, 254762639798858, 208201467280177 @ -123, 44, 173
|
||||||
|
292658057001566, 186611191986534, 294531491764749 @ -15, -6, -83
|
||||||
|
205133188202526, 283882440241030, 254246696852025 @ 85, 130, 88
|
||||||
|
207527722033694, 313490709226982, 155380049798509 @ 80, 103, 195
|
||||||
|
286095459839592, 182518785595248, 276773663547705 @ 8, 61, 5
|
||||||
|
221173207039028, 270280455415551, 302323873644328 @ 107, 51, 6
|
||||||
|
202220873384748, 331733628056034, 356583372113517 @ 98, 52, -37
|
||||||
|
478872952765358, 427762105117869, 367856149594534 @ -283, -141, -78
|
||||||
|
264485082557022, 134558202466358, 221148400319641 @ 133, 166, 252
|
||||||
|
303574831239612, 413128570023282, 224985056190447 @ -24, -8, 120
|
||||||
|
303656492350806, 448215155580240, 404372721283287 @ -23, -15, -62
|
||||||
|
289183181233890, 225442276391010, 278066389466093 @ -5, 36, 27
|
||||||
|
179891064098649, 251976683289780, 209996347833339 @ 102, 180, 133
|
||||||
|
292285855083730, 117890243167414, 322881299000409 @ -16, 214, -488
|
||||||
|
263115786187030, 164000553942130, 168076841054333 @ 41, 220, 243
|
||||||
|
255478895619510, 456459170387580, 311860606041413 @ 49, -255, -9
|
||||||
|
366278946085848, 360761257352178, 193601284347042 @ -105, 6, 164
|
||||||
|
268588220434735, 210511715640375, 273516093923258 @ 114, -249, -28
|
||||||
|
296367330036812, 45519306432278, 352752790350447 @ -22, 466, -146
|
||||||
|
312839808368697, 484657929662796, 311370704669898 @ -34, -84, 26
|
||||||
|
404183206681040, 437508574234990, 324857613500219 @ -166, -130, -10
|
||||||
|
301278417732710, 383208525587490, 324567902247773 @ -21, 39, 15
|
||||||
|
221521858324342, 147871529369018, 271954329484075 @ 233, 176, 20
|
||||||
|
238331541797146, 307094887243647, 285748486243466 @ 81, -21, 32
|
||||||
|
387058453145490, 291264628310445, 413288400222753 @ -103, 149, -65
|
||||||
|
281806695050800, 102535645981412, 224229206595093 @ 54, 337, 271
|
||||||
|
382768489961101, 289799539317816, 120400361307382 @ -102, 144, 222
|
||||||
|
358629218649038, 370723156567230, 510119746864869 @ -105, -45, -272
|
||||||
|
241723396587097, 32171878227714, 97562574749518 @ 182, 606, 686
|
||||||
|
339133911341583, 247399977873168, 317804203144806 @ -112, 24, -50
|
||||||
|
294812929007430, 121827959649486, 263346613288437 @ -56, 69, -78
|
||||||
|
333406576073130, 195418728322074, 119839720417061 @ -56, 231, 233
|
||||||
|
332913436495620, 413104400758692, 214961117634465 @ -126, -533, 193
|
||||||
|
306657286122368, 62579450992366, 408516596607431 @ -49, 434, -307
|
||||||
|
258918519707530, 402800225244410, 479136088804613 @ 48, -209, -319
|
||||||
|
306574106004125, 173338717947470, 274039489310813 @ -64, 82, 11
|
||||||
|
251003584491650, 344822439082095, 106437967388908 @ 33, 69, 248
|
||||||
|
443995844449518, 291076032086886, 458793724900896 @ -219, 74, -192
|
||||||
|
252149015845950, 260857624307700, 393158580379653 @ 37, 139, -81
|
||||||
|
282206724330750, 134213668434630, 246532562655693 @ 74, 55, 136
|
||||||
|
201878646851890, 294522179137582, 287458889971301 @ 84, 128, 53
|
||||||
|
282686826780880, 79828713648940, 301068037995743 @ 102, 629, -532
|
||||||
|
308838180675575, 253775954545887, 269072245209172 @ -106, -501, -6
|
||||||
|
400535675511166, 345143982201823, 426505437599253 @ -235, -167, -269
|
||||||
|
241394577836181, 224211159579393, 261691886181732 @ 202, -181, 48
|
||||||
|
306077706063674, 284725755377606, 154803647614769 @ -25, 154, 185
|
||||||
|
365653589396198, 463153272873646, 312571854846221 @ -268, -919, -121
|
||||||
|
318686554371549, 151900504113227, 114002600725269 @ -44, 271, 259
|
||||||
|
191058082403166, 232741228913382, 102877348473645 @ 123, 158, 289
|
||||||
|
251854512913260, 416926846065180, 322517509362363 @ 35, -32, 9
|
||||||
|
73732096579230, 248889630850150, 160735050119213 @ 229, 170, 191
|
||||||
|
308010120634782, 162247896695142, 206898344596077 @ -123, -72, 397
|
||||||
|
367094950925958, 346430011480326, 208310940226305 @ -175, -198, 185
|
||||||
|
348415508704715, 438913362553805, 431065206792327 @ -66, 5, -83
|
||||||
|
243913767214746, 318499986277368, 301330634810601 @ 83, -93, -7
|
||||||
|
290577302424987, 274027862543418, 310173273280014 @ -8, -138, -70
|
||||||
|
206367355193595, 443890386024435, 368947946735853 @ 82, -41, -37
|
||||||
|
314653135165260, 180719675893200, 336836128302903 @ -101, 28, -243
|
||||||
|
288758467027095, 142092153424095, 259845125549678 @ 16, -27, 14
|
||||||
|
251264327216991, 458958803080533, 351002059495629 @ 28, -13, -5
|
||||||
|
418453792994686, 377148066828538, 435517022329401 @ -195, -67, -176
|
||||||
|
300663139345815, 210318755541796, 391838480041011 @ -26, 152, -143
|
||||||
|
407819019583242, 264973287489378, 316298185761345 @ -124, 173, 28
|
||||||
|
300135433810158, 223703968826661, 330554985106861 @ -59, -351, -357
|
||||||
|
256373700487946, 201202354218908, 190134413167444 @ 185, -212, 432
|
||||||
|
264501569368215, 231915482473611, 251960400470196 @ 54, 23, 90
|
||||||
|
336088957922234, 274440731677630, 233603922638286 @ -63, 130, 112
|
||||||
|
292857361973673, 283315137160764, 319233308865504 @ -14, -124, -80
|
||||||
|
321460440055107, 406017933749745, 531393869902203 @ -44, -5, -219
|
||||||
|
261930383598387, 187271446516332, 396711117278349 @ 48, 164, -197
|
||||||
|
309135970551222, 289175860707045, 375988873917336 @ -35, 75, -80
|
||||||
|
330678833381150, 483935876388870, 103308110887661 @ -51, -60, 243
|
||||||
|
261484400605515, 64021410780961, 2680557427552 @ 34, 389, 462
|
||||||
|
338283557846180, 156144241744018, 296461137199135 @ -121, 206, -15
|
||||||
|
309973256445432, 380764412783106, 385767755453441 @ -32, 12, -63
|
||||||
|
180763727091872, 337325506704120, 285455855714899 @ 110, 75, 54
|
||||||
|
295274855868646, 262670799891631, 301562541002100 @ -19, -23, -20
|
||||||
|
415066581259959, 422582696665690, 396764486826004 @ -158, -50, -82
|
||||||
|
380928659873894, 147316450744614, 271580130291589 @ -109, 282, 69
|
||||||
|
284992931832300, 147112605604440, 242678306042148 @ 47, -48, 168
|
||||||
|
207537338020749, 233431877160355, 221420927966864 @ 70, 205, 120
|
||||||
|
287890570470198, 167049146098542, 265267007686725 @ 8, 11, 22
|
||||||
|
205106249502228, 144601615135332, 281915604194933 @ 103, 276, 51
|
||||||
|
219264098307253, 204774009695507, 228526044811677 @ 140, 119, 139
|
||||||
|
271096476245745, 250811406877864, 297718115811410 @ 34, 8, -10
|
||||||
|
327093059895630, 334242590617238, 236585941259549 @ -56, 37, 110
|
||||||
|
302677117068011, 427043527270244, 342141092441752 @ -24, -52, -16
|
||||||
|
292578448121010, 177016380525750, 95618865530373 @ -16, -74, 949
|
|
@ -0,0 +1,5 @@
|
||||||
|
19, 13, 30 @ -2, 1, -2
|
||||||
|
18, 19, 22 @ -1, -1, -2
|
||||||
|
20, 25, 34 @ -2, -2, -4
|
||||||
|
12, 31, 28 @ -1, -2, -1
|
||||||
|
20, 19, 15 @ 1, -5, -3
|
|
@ -0,0 +1,109 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
def read_input(input):
|
||||||
|
data = []
|
||||||
|
for line in input:
|
||||||
|
x, y, z, dx, dy, dz = [int(v) for v in line.replace("@", "").replace(",", " ").split()]
|
||||||
|
data.append((x,y,z,dx,dy,dz))
|
||||||
|
return data
|
||||||
|
|
||||||
|
def intersect_2d(l1, l2):
|
||||||
|
x0, y0, _, dx0, dy0, _ = l1
|
||||||
|
x1, y1, _, dx1, dy1, _ = l2
|
||||||
|
|
||||||
|
# convert to ax+by = c form
|
||||||
|
#(x - x0)dx0 + x0 = (y-y0)dy0 + y0
|
||||||
|
#x*dx0 - dx0*x0 + x0 = y*dy0 - dy0*y0 + y0
|
||||||
|
#x*dx0 - y*dy0 = dx0*x0 - dy0*y0 + y0 - x0
|
||||||
|
|
||||||
|
# x0 + t dx0 = x(t)
|
||||||
|
# y0 + t dy0 = y(t)
|
||||||
|
# t = (y - y0)/dy0
|
||||||
|
# t = (x - x0)/dx0
|
||||||
|
# (y-y0)/dy0 = (x-x0{
|
||||||
|
# x0 + (y-y0)/dy0 * dx0 = x
|
||||||
|
# x0 + y*dx0/dy0 - y0*dx0/dy0 = x
|
||||||
|
# x0 - y0*dx0/dy0 = x - y*dx0/dy0
|
||||||
|
|
||||||
|
a0 = dx0
|
||||||
|
b0 = -dy0
|
||||||
|
c0 = dx0*x0 - dy0*y0
|
||||||
|
|
||||||
|
a0 = dy0
|
||||||
|
b0 = -dx0
|
||||||
|
c0 = x0*(y0+dy0) - y0*(x0+dx0)
|
||||||
|
|
||||||
|
assert a0*x0 + b0*y0 == c0
|
||||||
|
|
||||||
|
a1 = dx1
|
||||||
|
b1 = -dy1
|
||||||
|
c1 = dx1*x1 - dy1*y1
|
||||||
|
|
||||||
|
a1 = dy1
|
||||||
|
b1 = -dx1
|
||||||
|
c1 = x1*(y1+dy1) - y1*(x1+dx1)
|
||||||
|
assert a1*x1 + b1*y1 == c1
|
||||||
|
|
||||||
|
# cramer's rule
|
||||||
|
d = a0*b1 - a1*b0
|
||||||
|
if d == 0 :
|
||||||
|
# non-intersecting
|
||||||
|
return None
|
||||||
|
|
||||||
|
return (c0*b1 - c1*b0)/d, (a0*c1 - a1*c0)/d
|
||||||
|
|
||||||
|
def intersect_2d(l1, l2):
|
||||||
|
x0, y0, _, dx0, dy0, _ = l1
|
||||||
|
x1, y1, _, dx1, dy1, _ = l2
|
||||||
|
|
||||||
|
# convert to ax+by = c form
|
||||||
|
# (x-x0)/dx0 = (y-y0)/dy0
|
||||||
|
# dy0(x-x0) = (dx0)(y-y0)
|
||||||
|
# x*dy0 - dy0*x0 = y*dx0 - dx0*y0
|
||||||
|
# x*dy0 - y*dx0 = dy0*x0 - dx0*y0
|
||||||
|
|
||||||
|
a0 = dy0
|
||||||
|
b0 = -dx0
|
||||||
|
c0 = x0*dy0 - y0*dx0
|
||||||
|
|
||||||
|
assert a0*x0 + b0*y0 == c0
|
||||||
|
|
||||||
|
a1 = dy1
|
||||||
|
b1 = -dx1
|
||||||
|
c1 = x1*dy1 - y1*dx1
|
||||||
|
assert a1*x1 + b1*y1 == c1
|
||||||
|
|
||||||
|
|
||||||
|
# cramer's rule
|
||||||
|
d = a0*b1 - a1*b0
|
||||||
|
if d == 0 :
|
||||||
|
# non-intersecting
|
||||||
|
return None
|
||||||
|
|
||||||
|
return (c0*b1 - c1*b0)/d, (a0*c1 - a1*c0)/d
|
||||||
|
|
||||||
|
def future(l1, point):
|
||||||
|
x,y,z, dx,dy,dz = l1
|
||||||
|
x0, y0 = point
|
||||||
|
return (dx < 0 and x0 <= x) or (dx > 0 and x0 >= x)
|
||||||
|
|
||||||
|
def inbounds(point):
|
||||||
|
x,y = point
|
||||||
|
if 7 <= x <= 21 and 7 <= y <= 21: return True
|
||||||
|
return 200000000000000 <= x <= 400000000000000 and 200000000000000 <= y <= 400000000000000
|
||||||
|
|
||||||
|
def solve(input):
|
||||||
|
data = read_input(input)
|
||||||
|
t = 0
|
||||||
|
for i,h1 in enumerate(data):
|
||||||
|
for h2 in data[i+1:]:
|
||||||
|
p = intersect_2d(h1, h2)
|
||||||
|
print(h1,h2, p)
|
||||||
|
if p is not None:
|
||||||
|
if future(h1, p) and future(h2, p):
|
||||||
|
if inbounds(p):
|
||||||
|
print(h1, h2, p)
|
||||||
|
t += 1
|
||||||
|
print(t)
|
||||||
|
|
||||||
|
import sys
|
||||||
|
solve(sys.stdin)
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,13 @@
|
||||||
|
jqt: rhn xhk nvd
|
||||||
|
rsh: frs pzl lsr
|
||||||
|
xhk: hfx
|
||||||
|
cmg: qnr nvd lhk bvb
|
||||||
|
rhn: xhk bvb hfx
|
||||||
|
bvb: xhk hfx
|
||||||
|
pzl: lsr hfx nvd
|
||||||
|
qnr: nvd
|
||||||
|
ntq: jqt hfx bvb xhk
|
||||||
|
nvd: lhk
|
||||||
|
lsr: lhk
|
||||||
|
rzs: qnr cmg lsr rsh
|
||||||
|
frs: qnr lhk lsr
|
|
@ -0,0 +1,124 @@
|
||||||
|
import sys
|
||||||
|
import random
|
||||||
|
from pprint import pprint
|
||||||
|
|
||||||
|
def main():
|
||||||
|
G = {}
|
||||||
|
for line in sys.stdin:
|
||||||
|
n, to = line.split(": ")
|
||||||
|
to = to.split()
|
||||||
|
G[n] = to
|
||||||
|
|
||||||
|
pprint(G)
|
||||||
|
|
||||||
|
# mke connections symmetric
|
||||||
|
for n in list(G):
|
||||||
|
for t in G[n]:
|
||||||
|
G.setdefault(t,[])
|
||||||
|
if n not in G[t]:
|
||||||
|
G[t].append(n)
|
||||||
|
|
||||||
|
G = {n:tuple(t) for n,t in G.items()}
|
||||||
|
pprint(G)
|
||||||
|
|
||||||
|
print([len(g) for g in connected_components(G, set())])
|
||||||
|
def key(e):
|
||||||
|
v,t = e
|
||||||
|
return sort2(len(G[v]),len(G[t]))
|
||||||
|
E = sorted(set(sort2(v,t) for v in G for t in G[v]), key=key)
|
||||||
|
|
||||||
|
print(connected_components(G, {sort2('hfx','pzl'), sort2('bvb','cmg'), sort2('jqt','nvd')}))
|
||||||
|
|
||||||
|
num = 100
|
||||||
|
while num > 3:
|
||||||
|
num, fwd = karger_stein(G, E)
|
||||||
|
|
||||||
|
P = {}
|
||||||
|
for v,t in fwd.items():
|
||||||
|
P.setdefault(v,[])
|
||||||
|
P.setdefault(t,[])
|
||||||
|
P[v].append(t)
|
||||||
|
P[t].append(v)
|
||||||
|
cc = connected_components(P, set())
|
||||||
|
print([len(x) for x in cc])
|
||||||
|
print(len(cc[0]) * len(cc[1]))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def karger_stein(G,E):
|
||||||
|
num = len(G)
|
||||||
|
fwd = {}
|
||||||
|
while num > 2:
|
||||||
|
# choose a random e
|
||||||
|
v,t = random.choice(E)
|
||||||
|
# contract the edge
|
||||||
|
fwd[v] = t
|
||||||
|
F = []
|
||||||
|
for v,t in E:
|
||||||
|
v = fwd.get(v,v)
|
||||||
|
t = fwd.get(t,t)
|
||||||
|
if v != t:
|
||||||
|
F.append((v,t))
|
||||||
|
E = F
|
||||||
|
num -= 1
|
||||||
|
print(len(E), E)
|
||||||
|
return len(E), fwd
|
||||||
|
|
||||||
|
def brute_force(x):
|
||||||
|
print([len(g) for g in connected_components(G, set())])
|
||||||
|
def key(e):
|
||||||
|
v,t = e
|
||||||
|
return sort2(len(G[v]),len(G[t]))
|
||||||
|
E = sorted(set(sort2(v,t) for v in G for t in G[v]), key=key)
|
||||||
|
E = [(v,t) for v,t in E if len(G[t]) <= 3 and len(G[v]) <= 3]
|
||||||
|
|
||||||
|
print(connected_components(G, {sort2('hfx','pzl'), sort2('bvb','cmg'), sort2('jqt','nvd')}))
|
||||||
|
|
||||||
|
#assert set(E) > {sort2('hfx','pzl'), sort2('bvb','cmg'), sort2('jqt','nvd')}
|
||||||
|
|
||||||
|
for i,e1 in enumerate(E):
|
||||||
|
print("#", i, e1)
|
||||||
|
for j,e2 in enumerate(E[i+1:], start=i+1):
|
||||||
|
for e3 in E[j+1:]:
|
||||||
|
cc = connected_components(G, {e1,e2,e3})
|
||||||
|
if len(cc) > 1 and not any(len(g) == 1 for g in cc):
|
||||||
|
#print(cc)
|
||||||
|
print(e1,e2,e3)
|
||||||
|
print([len(x) for x in cc])
|
||||||
|
print(len(cc[0]) * len(cc[1]))
|
||||||
|
|
||||||
|
|
||||||
|
def connected_components(G, nope):
|
||||||
|
V = [v for v in G]
|
||||||
|
mark = set()
|
||||||
|
cc = []
|
||||||
|
#print(nope)
|
||||||
|
while V:
|
||||||
|
node = V.pop()
|
||||||
|
if node in mark:
|
||||||
|
continue
|
||||||
|
group = []
|
||||||
|
|
||||||
|
def visit(node):
|
||||||
|
queue = [node]
|
||||||
|
while queue:
|
||||||
|
n = queue.pop()
|
||||||
|
if n in mark:
|
||||||
|
continue
|
||||||
|
mark.add(n)
|
||||||
|
group.append(n)
|
||||||
|
if n in G:
|
||||||
|
for t in G[n]:
|
||||||
|
if t not in mark and sort2(n,t) not in nope:
|
||||||
|
queue.append(t)
|
||||||
|
visit(node)
|
||||||
|
|
||||||
|
assert len(group) > 0
|
||||||
|
cc.append(group)
|
||||||
|
return cc
|
||||||
|
|
||||||
|
def sort2(a,b):
|
||||||
|
return min(a,b), max(a,b)
|
||||||
|
|
||||||
|
|
||||||
|
main()
|
Loading…
Reference in New Issue